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ABSTRACT It has long been argued that algo-
rithms that find correlated mutations in multiple
sequence alignments can be used to find structurally
or functionally important residues in proteins. We
examined the properties of four different methods for
detecting these correlated mutations. On both simple,
artificial alignments and real alignments from the
Pfam database, we found a surprising lack of agree-
ment between the four correlated mutation methods.
We argue that these differences are caused in part by
differing sensitivities to background conservation.
Correlated mutation algorithms can be envisioned as
“filters” of background conservation with each algo-
rithm searching for correlated mutations that occur
at a different background conservation frequency.
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INTRODUCTION

It has long been realized that correlated mutation
information in multiple sequence alignments can be used
to predict residue contacts in proteins.'~® More recently, it
has been suggested that a member of this class of algo-
rithms can be used to find energetically linked chains of
functionally important residues.®*! The idea behind corre-
lated mutations is simple: if every time a given residue in a
column of an alignment changes there is a corresponding
change in another column of the alignment, then these
residue positions may be linked either functionally, ener-
getically or by virtue of being in physical proximity in some
important conformation of the protein.

By their nature, algorithms that measure correlated
mutations have to favor an intermediate level of conserva-
tion. If, on the one hand, one or both columns in a protein
alignment are not at all conserved, that is, are completely
random, then there can be only spurious correlations
between the two columns and application of any correlated
mutation algorithm should yield a low score. A perfectly
conserved column, on the other hand, presents a concep-
tual challenge to covariance; a correlated mutation algo-
rithm is supposed to detect how the changes in column i
effect column j. If there are no changes in a column, a
correlated mutation algorithm must choose to report no
score, a perfectly high score, or a perfectly low score.

This article examines four correlated mutation algo-
rithms that were chosen from among the many algorithms
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described in the literature. We construct simple, artificial
alignments and show that these four algorithms make
very different choices in their description of the intermedi-
ate level of conservation that defines covariance, with
some algorithms favoring more conserved conditions than
others. We suggest that this choice of how to “filter”
conservation defines much of the functionality of corre-
lated mutation algorithms as seen in a collection of 224
Pfam alignments.

METHODS
Generation of Predictions of Distance from Pfam
Database

The Pfam 7.7 (October 2002) text archive was down-
loaded from the Pfam'? database (http:/pfam.wustl.edu/).
We removed from our data set any Pfam alignment that
did not have an associated PDB file as indicated by the GF
DR comment line. For performance reasons, we removed
any Pfam alignment from our data set that had more than
1000 sequences. Using the CLUSTALW program?® with
the default parameters, each sequence with the gaps
removed in each remaining protein family was aligned
against the sequence of each chain in each PDB file'® as
specified by the Pfam alignment’s GF DR comment line.
Any structure that gave duplicate coordinates for any
atom was excluded. For each Pfam alignment, the PDB file
with the longest >95% identity match to a sequence in
that Pfam alignment was selected. We refer to the row in a
Pfam alignment that had the best match to a chain in the
chosen PDB file as the reference sequence. Using CLUST-
ALW, we created for each protein family a reference
alignment between the reference sequence and the se-
quences of all of the chains in the chosen PDB file that
were specified by the GF DR comment. We excluded from
our study any columns in a Pfam alignment for which the
reference sequence had a gap. Also excluded from each
Pfam alignment were any columns in which the residue in
the reference sequence did not perfectly match the resi-
dues in all of the PDB chains in the reference alignment.
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This guaranteed that every pair of Pfam columns for which
we generated a conservation or covariance score could be
mapped with high confidence to a pair of residue positions
in the chosen PDB file.

For each of the chosen PDB files, the distances between
pairs of residues were measured as CB—CB distances (Ca
for glycine). In the case of multichain proteins, the small-
est distance was used. For example, the distance between
positions 3 and 7 in our reference alignment of a crystal
structure with chains A and B would be the smallest
distance between A3-A7, A3-B7, B3-A7, and B3-B7. Each
Pfam alignment for which a PDB file had been chosen was
filtered so that any redundant sequences (sequences with
>90% identity to another sequence in the alignment) were
removed. This was accomplished by creating a new align-
ment and adding sequences one at a time from the old
alignment where sequences were added only if they had
<90% identity to all sequences already in the new align-
ment. All columns with >50% gapped residues were then
removed from the alignments. A gap was considered as
any character that was not a valid, upper case symbol for
an amino acid. Alignments that had fewer than 100 such
columns with >50% nongapped residues were removed
from the analysis set. Any alignment that had fewer than
100 protein sequences in the nonredundant alignment was
also removed from the analysis set. There were a total of
224 protein families that met all of our criteria and were
retained in the analysis set. To correct for any possible
artifacts resulting from residues close to each other in the
protein sequence, any pair of residue positions that were
within eight residues of each other in the sequence of the
PDB file were discarded from all analyses.

Note that the SCA algorithm has a free parameter that
has the effect of excluding poorly conserved columns from
the alignment (http:/www.hhmi.swmed.edu/Labs/rr/world/
sca/sup_figure2.pdf). Because a goal of our study was to
examine the effect of conservation on correlated muta-
tions, we did not use this parameter and therefore in-
cluded poorly conserved columns in our study. This deci-
sion negatively impacted the power of the SCA algorithm,
which has a tendency to assign an excessively high score to
poorly conserved columns [Fig. 1(B)] and therefore benefits
to a modest degree from the removal of these columns from
the alignment. Even with these poorly conserved columns
removed, however, SCA still underperforms OMES and
McBASC and outperforms MI (data not shown). In another
study we have described the behavior of the SCA algo-
rithm with the most poorly conserved residues removed
and made some suggestions for improving SCA’s perfor-
mance.??

Unlike the other correlated mutation algorithms, the
SCA algorithm is not symmetrical in the scores it gener-
ates. That is, SCA(, j) does not equal SCA(j, i) because the
first column is used to define the “perturbation” that
creates the subalignment. In the original SCA article,°
SCA scores were reported based on the perturbation of the
first column without consideration of the SCA(j, i) score. In
subsequent articles®!! the SCA(, j) and SCA(j, i) scores
might appear in separate columns in a matrix of SCA
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scores, although the presence of SCA(, j) guarantees
neither the presence nor absence of SCA(j, i) because
poorly conserved columns in the alignment are removed
from consideration as columns, but not rows, in the SCA
score matrix. In our study, in order to make a single
prediction of pair distance, we need to generate a single
score for each pair of columns in the alignment. To do this,
we constrained the relationship between ¢ and j so that it
was always true that j > i. So, for example, for columns 1
and 5 in an alignment, we used the most conserved residue
in column 1 to form the subalignment and reported the
SCA score for SCA(1, 5) but not SCA(5, 1). One can
imagine a number of strategies for combining SCA(z, j) and
SCA(j, i) scores that might effect the power of the SCA
algorithm. For example, one could average the two scores,
take the higher of the scores, and so forth. Because these
sorts of strategies were not part of the original SCA
description, however, we have not evaluated the effects of
these strategies in this study.

Our list of the 224 Pfam families included in this study is
available in the Supplementary Materials online. The
Java code used in this article is available at http:/www.
afodor.net.

Calculation of p Values

For both covariance and conservation calculations, the
predictions of pair distance for the highest 75 scoring pairs
of residues was chosen. We then counted the number of
these pairs that was less than or equal to the 50th
percentile of all pair distances as calculated for that Pfam
family. We then asked what was the probability that an
algorithm that chooses pairs of columns at random could
choose as many residue pairs less than or equal to the 50th
percentile. Because our analysis was limited to alignments
with at least 100 columns, there is a minimum of ~5000
(100%2) possible pairs of residues for each alignment.
Because this number is so large, choosing the first 75 pairs
of residues can be very closely approximated as choosing
with replacement and the probability is therefore almost
exactly described by the binomial distribution. Therefore,
the probability that we are seeking is given by

§< 75' ) 5" X 5757n
n!(75 — n)! ’

n

where n is the number that the algorithm chose within the
first 75 paris that were less than or equal to the 50th
percentile.

Note that our choice of 75 pairs of residues and the 50th
percentile in this equation is arbitrary. For example, we
could have instead examined the first 25 or 100 pairs of
residues instead of 75 or required that pair distances be
within the 10th or 25th percentile instead of the 50th
percentile. We have found, however, that the relative
power of the conservation and four covariance algorithms
is not substantially different even when, for example,
examining only the first 25 residues and requiring that
pair distances be within the first 10th percentile (data not
shown). We argue, therefore, that whereas the choice of 75
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residues and the 50th percentile is arbitrary, using these
parameters gives a reasonable estimate of the power of
each of the algorithms.

RESULTS
Observed Minus Expected Squared (OMES)
Covariance Algorithm

Our first covariance analysis (which we call OMES) is
derived from the covariance method of Kass and Horo-
vitz.'? For every possible pair of columns (column i vs.
column j), generate a list L of all distinct pairs of amino
acids. Discard any pairs that have a gap at either i orj. The
score for each column pair i, j is given by

i (Nobs - Nex)2
Nvalid

1

where N ;4 is the number of sequences in the alignment
that have nongapped residues at both positions i and j,
N, is the number of times that each distinct pair of
residues was observed, and N is the number of times that
each distinct pair of residues would be expected based only
on the frequency of each residue in each column. The value
of N, for a given pair with residue x at position i and

residue y at position j can be calculated by

N _ CxiCyj
ex — )
N. valid

where c,; is the number of times residue x occurs at
position i and c,; is the number of times y occurs at position
J. Table SI in the Supplemental Materials online shows
how two columns in a short hypothetical alignment would
be scored under the OMES covariance scheme.

Note that for any two perfectly conserved columns, the
covariance algorithm must give a score of zero. If column x
has only residue ; and column y has only residue j, then
N, = N, 1iqa = N,,s and the OMES score reduces to zero.

Mutual Information (MI) Covariance Algorithm

Our implementation of the MI algorithm follows the
description given by Atchley et al.'® According to this
algorithm, “the extent of ‘correlation’ or association be-
tween residues at amino acid sites X and Y that might
arise from evolutionary, functional, or structural con-
straints” is defined as

n m ﬁ
E 2 pjilog Py

j=1k=1

where one column has n different kinds of residues, the
other column has m different kinds of residues, p; is the
probability of residue type j being in the first column, g, is
the probability of residue type %k being in the second
column, and pj;, is the number of sequences with both j in
the first column and % in the second column divided by the
total number of sequences.'* Note that in the case of either
i or j being perfectly conserved, p; X g, = p;, and the
assigned score reduces to zero. In calculating p;, q;, and p;;,
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frequencies for each pair of columns, we only included
sequences that were ungapped at both residue positions.

Statistical Coupling Analysis (SCA) Covariance
Algorithm

We used the SCA software package Windows binaries
that were generously provided by Rama Ranganathan
(University of Texas, Southwestern Medical School). These
algorithms have been previously described.'® Briefly, this
method of detecting correlated mutations works by creat-
ing subalignments and asking if a subalignment has a
changed residue composition compared to the parent align-
ment from which it was drawn. Following the original
articles,® 1! we chose the most conserved residue in each
column as our “perturbation,” meaning that each subalign-
ment generated for each column consisted of all the
sequences that had the most conserved residue at that
position.

McLachlan Based Substitution Correlation
(McBASC)

Our implementation followed the description provided
by Olmea et al.,> which in turn was based on an earlier
article by Gobel et al.? If N is the number of sequences in
the alignment, for each column i in the alignment con-
struct a two-dimensional N X N matrix running from% = 1
to N in one dimension and from [ = 1 to N in the other
dimension. Each entry in the matrix is the value from a
substitution matrix that assigns a high score if there is an
identity or conservative substitution for the pair of resi-
dues in sequences &, [ at column i and a low score if there is
a nonconservative substitution. Following Olmea et al.,2
we used the McLachlan substitution matrix.'® (s,) is the
average and o, is the standard deviation of all the entries
in the N X N matrix. The correlation score between two
columns i and j is defined as

> (8w — () (80 — (s,))
1 u

i T NP 0,0;

This value ranges from —1 < r = +1 with a score of +1
indicating highly covarying columns. Note that r;; is
undefined if either column i or j is perfectly conserved as
for all entries s — (s) = 0 and hence ¢ = 0. We therefore
follow the previous implementations and remove perfectly
conserved columns from our analysis of the McBASC
algorithm. It can be shown, however, that the limit of r,
approaches +1 as columns i and j approach perfect conser-
vation. This is a consequence of r; ; being equal to +1 for
any two columns that are identical to each other. If
columns ¢ and j are identical, then the N X N matrices for
the two columns are identical and hence

(s;) = <3j>,
o; =0
s—(spy=s—{(s;)) V&L

For this special case r; ; reduces to
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> (s = (s))(s — (s))
kl N?—-1

TN S (s —(s)(s — (s) N

ki

r;

N?-1

This reduces to ~1 for any alignment with a nontrivial
number of sequences. The McLachlan matrix gives very
similar scores for all 20 residues when a residue is
substituted by itself. As a consequence of this the McBASC
algorithm will tend toward a high covariance score for
highly conserved pairs of columns in an alignment. This is
a conceptually legitimate choice, but it is a different choice
than that made by the SCA, OMES, and MI algorithms
which give a score of zero (or approaching zero for SCA) if
column i or j or both are perfectly conserved columns.

For performance reasons, the average and standard
deviation of the matrix for each column i in the alignment
was cached. In calculating these cached values, N* was
considered the number of entries in the matrix that were
ungapped for all pairs of sequences % and [ in column i.
When calculating the final McBASC score for the (i,))
column pair, a score of zero was assigned if there was a gap
in either sequence % or [ at either column i or j. N® was then
simply considered the square of the number of sequences
in the alignment. In addition, in order to fairly compare
McBASC with algorithms such as OMES in which nega-
tive correlations could receive high scores, we reported the
absolute value of the McBASC score. Java code for Mc-
BASC, and all other algorithms, is available at http:/
www.afodor.net

Conservation Algorithm

We take as our conservation measure the absolute
sequence entropy'®:

— > (p.(D)In p,@)

where i is the column of interest, x spans the 20 possible
amino acid residues, and p,(7) is the frequency of residue x
at position i. In order to compare the results of the
conservation algorithm to the covariance algorithm, the
conservation score of pairs of positions were averaged.

Performance of Correlated Mutation Algorithms on
Simple, Artificial Alignments

All metrics of correlated mutations must give higher
scores to intermediate levels of conservation. If two col-
umns of an alignment are not at all conserved, that is, both
are completely random, there can be few correlated muta-
tions and all covariance algorithms should give these
random columns a low score. On the other hand, perfectly
conserved columns present a problem for correlated muta-
tion algorithms. Correlated mutation algorithms are meant
to score how changes in one column effect changes in
another. In a perfectly conserved column, there are no
changes.

To illustrate how the different correlated mutation
algorithms handle this issue of background conservation,
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we constructed simple two-column artificial alignments.
Each point in Figure 1(A) shows the results of running the
algorithms over a different 1000-sequence two-column
alignment starting with an alignment consisting of 1000
MM sequences on the left of the x axis and ending with
1000 YY sequences on the right of the x axis. Moving from
left to right on the x axis, each point represents an
alignment in which one MM row in the alignment is
replaced with YY. The green curve represents the average
pair conservation score. As expected, we see that the
perfectly conserved sequences at x = 0 and 1000 receive
the highest conservation scores. The most highly covary-
ing alignment in the set of alignments in Figure 1(A)
occurs at x = 500, which has 500 MM sequences and 500
YY sequences. As expected, all four correlated mutation
algorithms give a high score to this highly covarying
alignment. The four correlated mutation algorithms, how-
ever, show dramatic differences in how they evaluate the
other alignments. The SCA and OMES algorithms have
relatively narrow “peaks” around the highly covarying
alignment at x = 500. That is, as the conservation level
moves away from perfectly intermediate, the scores of the
SCA and OMES algorithms rapidly drop off, however. The
MI algorithm has a wider “peak” around the highly
covarying alignment whereas the McBASC algorithm gives
an equally high score to conserved or covarying align-
ments. This reflects a fundamental difference between
McBASC and the other correlated mutation algorithms.
SCA, MI, and OMES choose to give a zero score to perfectly
conserved columns whereas McBASC gives a high score to
columns that approach being perfectly conserved. That is,
McBASC allows, without a reduction in score, substitution
of conserved pairs of residues for covarying ones whereas
the other algorithms approach zero as perfect conservation
is approached.

We can further elucidate the differences between these
algorithms by constructing another set of 1000 artificial,
two-column alignments each with 1000 sequences. Figure
1(B) shows the performance of the algorithms on a set of
alignments starting with 1000 random two residue se-
quences (at x = 0) and ending with 1000 perfectly con-
served YY sequences (at x = 1000). The value on the x axis
is therefore the number of YY sequences in the alignment
and (1000 — x) is the number of random sequences in the
alignment. As expected, the average conservation score
(green curve) increases as the number of random se-
quences in the alignment decreases. We see that in the
background of random sequences the four correlated muta-
tion algorithms yield dramatically different results with
each algorithm giving high scores to different alignments.
By this view, correlated mutation algorithms are “filters”
of background conservation with each algorithm having a
different sensitivity to a different background conserva-
tion “frequency.”

Several characteristics of Figure 1(B) are worth pointing
out in more detail. One is that the MI algorithm is the only
one of the correlated mutation algorithms that gives a
nonzero score to the completely random sequences. This
reflects the fact that, even with 1000 random sequences, p;
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residue inserted randomly at each position. For each point on the x axis, one random sequence is replaced with a YY. At x = 500, therefore, the
alignment consists of 500 YY sequences and 500 random sequences. Because low sequence entropy scores indicate a highly conserved column (see
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X g, is not always exactly p;, but MI's division of these
terms by one another can exaggerate these random differ-
ences. Likewise, SCA tends to favor highly random align-
ments. As we shall see in the real alignments below, MI
and SCA tend to give high scores to poorly conserved pairs
of columns. This may be explained in part by their
tendency to be “tricked” by random or near random
columns.

The “noise” characteristics of the McBASC algorithm in
Figure 1(B) are also interesting. One can see that as the
McBASC algorithm approaches the perfectly conserved
alignment at x = 1000, the noise, or the difference in score
between each immediately adjacent alignment, is substan-
tially increased. This makes intuitive sense as we are
approaching a division by zero error.

Covariation as a Function of Conservation in Real
Protein Alignments

We have seen for very simple, artificial alignments that
the four correlated mutation algorithms have very differ-
ent sensitivities to background conservation. Real protein
alignments are, of course, much more complicated than
the simple alignments used in Figure 1. To begin to
understand the properties of the correlated mutation
algorithms on real alignments, we turned to the Pfam
database, a collection of 4832 protein families.!” For each
of these protein families, we selected alignments that met
certain criteria for size and diversity and that had at least
one protein sequence with a >95% pairwise identity to a
sequence of a crystal structure from the Protein Data Bank
(PDB?8; see Methods section). There were 224 Pfam fami-
lies that met all of our criteria and were included in our
study. Figure 2(A) shows the results for a single Pfam
family, AMINO_OXIDASE. Each panel shows all 65,137
residue pairs except for the McBASC panel in which the
358 residue pairs in which either or both columns are
perfectly conserved have been removed (as required for
that algorithm). For each algorithm, the normalized score
is plotted against the pair conservation score. We see that,
as is the case for the artificial alignments in Figure 1, the
covariance algorithms appear to be sensitive to different
levels of background conservation. In particular, SCA and
MI appear to favor poorly conserved residue pairs when
compared to McBASC and OMES. As we expect from
Figure 1, McBASC does give high scores to some of the
more conserved column pairs whereas the other three
algorithms give reliably low scores to highly conserved
columns. This comparison is complicated, though, by the
fact that the residue pairs in which either column is
perfectly conserved have been removed from the McBASC
panel.

The data in Figure 1(A) from a single Pfam family
support the idea that each of the covariance algorithms
has a favored level of background conservation, but does
this trend hold in general for all Pfam families? To address
this question, we made an arbitrary choice of the 75 pairs
of residues with the highest covariance score under each
algorithm. Figure 1(B) shows for each of the 224 Pfam
families in our study the average pair conservation of the
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highest scoring 75 pairs of residues under each algorithm.
The sensitivity to conservation shows a clear trend with
algorithms favoring increasingly poorly conserved residue
pairs in the order McBASC > OMES > SCA > MI.

Algorithm Performance in Finding Clustered
Residue Pairs

We have, so far, examined the influence of conservation
in assigning correlated mutation scores. We now examine
the power of these algorithms in predicting protein struc-
ture and function. Figure 3 shows the ability of each
algorithm to find physically close pairs of residues. Figure
3(A) shows all 10,395 residue pairs for the AIRS_C Pfam
family. For the McBASC algorithm, the 135 residue pairs
involving one or two perfectly conserved columns have
been removed. For all panels, CB—Cp pair distances were
generated from the PUR5_ECOLI sequence within the
AIR_C alignment corresponding to the PDB structure 1cli.
Supplementary Figures S1-S5 online show similar score
versus pair distance plots for all 224 Pfam families in our
study.

We have seen that the different correlated mutation
algorithms are sensitive to different levels of background
conservation in assigning scores to the top 75 pairs of
residues (Fig. 2). The blue dots in all panels of Figure 3(A)
are the top scoring 75 pairs of residues for the McBASC
algorithm. We see that the four correlated mutation
algorithms make different predictions for the top 75
scoring residue pairs. For example, both the MI and
McBASC algorithms and the SCA and McBASC algo-
rithms share only 9 of their top 75 scoring pairs of
residues. McBASC has more in common with OMES, but,
even so, only 24 out of the top 75 pairs of residues are
shared. As we would expect from their differing sensitivi-
ties to background conservation, the covariance algo-
rithms on average assign high scores to distinct residue
pairs.

One can see by visual inspection that the pairs of
residues with the highest scores under the OMES, Mc-
BASC and conservation algorithms tend to be physically
close to each other. But are these trends statistically
significant? We constrain this question as follows: consider
the 75 most highly conserved and covarying pairs of
residues [those to the right of the vertical red lines, Fig.
3(A)]. What are the odds that by choosing pairs of columns
at random, one could do as well as the conservation and
covariance algorithms in choosing pairs of residues below
the 50th percentile of all CB—Cp distances [horizontal red
lines, Fig. 3(A)]? In choosing 75 pairs at random, we would
expect to choose 37.5 out of 75 at or below the 50th
percentile. That is, one would expect by chance to have as
many pairs of residues below the horizontal red line as
above it. We see that for AIRS_C, the conservation algo-
rithm in fact predicts 61 out of 75 pairs of residues falling
below the 50th percentile. The probability that a random
pairing algorithm could have done as wellis p < 10”7 (see
Methods section). The same calculation is carried out for
each of the correlated mutation algorithms and the result-
ing p value is shown under each panel in Figure 3(A). We
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see that the SCA and MI correlated mutation algorithms
have lower power for the AIRS_C alignment than do the
McBASC and OMES algorithms.

In Figure 3(A) we have chosen a single Pfam family to
demonstrate the properties of the conservation and corre-
lated mutation algorithms. Figure 3(B) shows the probabil-
ity of the null hypothesis that a random pairing algorithm
could perform as well as the conservation algorithm in
finding physically close pairs of residues for the top scoring
75 residue pairs in all 224 Pfam families. The dashed line
indicates the p = 0.05 level. Clearly, the most conserved 75
residue pairs tend to be clustered in space. Figure 3(C)
shows the results of this calculation for the correlated
mutation algorithms. We see a wide difference in the
power of these algorithms with McBASC and OMES
displaying far more power than SCA and MI.

The Performance Differences of Correlated
Mutation Algorithms Cannot be Explained by the
Tendency of Conserved Residues to Cluster

As we have just seen [Fig. 3(C)], the different correlated
mutation algorithms have different levels of performance
with decreasing power in the order McBASC > OMES >
SCA > MI. As we have seen in figure 2(B), the algorithms
have decreasing sensitivity to background conservation in
the same order McBASC > OMES > SCA > MI. The fact
that conserved residues are clustered in space [Fig. 3(B)]

raises the possibility that the performance differences
between the algorithms are due to the fact that they are
sensitive to different levels of conservation. That is, it
seems possible that the performance differences between
the covariance algorithms are not attributable to the
ability to detect covariance but only to differences in the
ability to find conserved, and hence clustered, residue
pairs.

To address this possibility, we took for each algorithm
for each protein family the set of 75 residue pairs with the
highest covariance scores. For each family, we wanted to
create an alternative set of 75 residue pairs that would
have the same average background conservation as the
original set of 75 but for which the covariance would be
ignored. To do this, we calculated the average conservation
of the 75 residue pairs in the original set. We then found
the 75 residue pairs in each protein family with the
average conservation closest to this calculated conserva-
tion. The data in Figure 3(D) shows the results generated
for all 224 Pfam families from this new set of 75 residue
pairs that have been constrained to have the same average
conservation as in Figure 3(C) but in which the covariance
was ignored. By visually subtracting Figure 3(D) from
3(C), therefore, one can get a sense of how much of the
power of each algorithm is due to the ability to detect
correlated mutations independent of the tendency for
conserved residues to cluster together. We see that only a
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small part of the performance of McBASC and OMES can
be explained by the tendency of conserved residues to
cluster. Therefore, we can conclude that, at least for Pfam
alignments, McBASC and OMES are more successful in
finding clustered covarying pairs than are SCA and MI. In
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other words, McBASC and OMES appear to look for
covariance at a background conservation frequency where
it is much more common in Pfam alignments than in the
lower background conservation frequency examined by
SCA and MI. SCA and MI do have some power, though,
and generally find different pairs of residues than Mec-
BASC and OMES. It therefore seems likely that there are
relatively rare correlated mutations that occur at poorly
conserved frequencies that SCA and MI detect and Mec-
BASC and OMES do not.

Using Correlations to Predict Residue Contacts

The predominant use of covariance algorithms in the
literature has been as predictors of interresidue contacts.
According to CASP guidelines (http:/www.predictioncenter.
lInl-.gov/casp5), a “long-range” interresidue contact is de-
fined as two residues that are separated by at least nine
residue positions in the linear sequence in which the
CB-Cp distance is =8 A. Accordingly, in all of our analyses
we removed any residue pairs that were within eight
positions in the linear sequence. CASP defines accuracy as
the number of correctly predicted residue contacts divided
by the number of total predictions submitted. Supplemen-
tary Figures S6—S11 online show the accuracy for all 224
protein families as a function of the number of residues
that each algorithm was asked to predict. For all of the
algorithms, the accuracy goes down dramatically as the
number of “submitted” predictions goes up. Figure 4 shows
the average accuracy across all 224 protein families for
each algorithm. The relative power of each algorithms is
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Fig. 5. Algorithm performance for multiple Pfam families. Performance of (yellow) McBASC, (black) OMES, (red) SCA, (blue) MI, and (green) conservation
for all 224 Pfam families that met our criteria. Each panel is a histogram with each point on the x axis representing 0.025 percentile. So, for example, each of the
rightmost points in (A) and (B) is the average pair distance percentile across all 224 Pfam families for conservation or covariance scores between the 99.975th
and 100th percentile scores for each algorithm. (A) The performance of the algorithms in predicting pair distance. (B) The same data as in (A) with the x axis
expanded to show only the 90th to 100th percentile. (C) The average conservation as a function of the covariance scores.
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the same as we would expect from Figure 3 with McBASC
and OMES outperforming SCA and MI. As we would
anticipate from the previous literature, the overall accu-
racy is quite low, consistent with previous observations
that covariance algorithms have only modest power in
predicting interresidue contacts.!”* Because the algo-
rithms generally choose distinct residues, it may be pos-
sible to combine them to produce an algorithm with higher
overall power. This has already been achieved with the
combination of McBASC and conservation for fold recogni-
tion.'?

Using Correlations to Predict Energetic
Connectivity

Not all of the suggested uses for correlated mutation
algorithms have been for solving protein structures. Re-
cently, more attention has been paid to using covariance
algorithms to find functionally important residues.'® In
particular, it has been suggested that the SCA covariance
algorithm can be used to successfully find “evolutionarily
conserved pathways of energetic connectivity” in pro-
teins.®~'! In the laboratory, this argument contends, the
energetic connectivity between two residues can be mea-
sured by mutating both residues independently and com-
paring the results to a double mutant. If the double
mutant causes emergent free energy properties compared
to the sum of the two single mutants, the two residue
positions are considered energetically coupled.?® We call
the hypothesis that the results of correlated mutation
algorithms can be correlated with the nonadditivity of
double mutant cycle experiments the SCA hypothesis,
after the article in which it was originally argued that the
SCA algorithm is a “good indicator of thermodynamic
coupling in proteins.”*®

In our study we do not directly consider energetic data
as generated by double mutant cycles. We argue below,
however, that our PDB distance data do reveal some
inherent limitations of the SCA hypothesis. Unlike predict-
ing residue contacts, which makes use of only the most
highly covarying pairs of residues, the SCA hypothesis
argues that information can be gleaned from the entire
range of covariance scores. Figure 3(C) from Lockless and
Ranganathan, for example, suggests that pairs of residue
positions with intermediate scores under the SCA algo-
rithm will have intermediate nonadditivity under double
mutant cycle experiments. In order to evaluate the SCA
hypothesis, we therefore needed to evaluate correlated
mutation algorithms across the entire range of their
scores. Correlated mutation algorithms can generate very
different ranges of scores for different protein families.
Proteins in the PDB can likewise have very different
average CB—Cp distances. To compare covariance scores
and pair distances across protein families, we therefore
transformed the covariance and pair distance scores for
each protein family to percentiles. Supplemental Figures
S12-S17 online show the relationship between covariance
score percentiles and pair distance percentiles for each of
the 224 Pfam families for each of the algorithms. Figure
5(A) shows the average values for the 224 Pfam families.
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The tendency for poorly covarying pairs to be physically
clustered for OMES and MI can be explained by the fact
that these algorithms give low scores to highly conserved
columns and, as we saw in Figure 3(B), conserved residues
also tend to be clustered.

Figure 5(B) shows the same data as Figure 5(A) except
that the x axis has been expanded to show only the 90th to
the 100th score percentiles. We see that for all four
covariance algorithms the ability to predict pair distance
occurs only for the highest scoring covarying pairs. As
scores decrease toward the 90th percentile, the covariance
algorithms rapidly approach the 50th percentile for pair
distance, which is the pair distance percentile that one
would generate by choosing pairs of residue positions at
random (see Supplementary Fig. S17). In particular, the
performance of the SCA algorithm approaches random for
SCA scores below the 99th percentile. This suggests one
problem with the SCA hypothesis: nearly all of the informa-
tion that the SCA covariance algorithm provides is in the
top 1% of covariance scores. SCA covariance seems un-
likely to be a “good indicator of thermodynamic coupling in
proteins”® if covariance scores below the 99th percentile
all mean essentially the same thing.

Of course, one could at this point save the SCA hypoth-
esis by arguing that the reason that 99% of all SCA scores
appear to have no meaning is that thermodynamic cou-
pling between residues is rare. Indeed, the fact that a
modest subset of residue positions participate in the
generation of high scores under the SCA algorithm has led
the authors of the SCA algorithm to conclude as “a central
result” that there exists “simplicity in the pattern of
coupling between amino acids in proteins.”!! They argue,
“Although, in principle, the pattern of all inter-residue
interactions could be complex, reality seems to be much
simpler.”'! We suggest as an alternative explanation that
the observed “simplicity” is a result of the low power of the
SCA covariance algorithm. The fact that a covariance
algorithm does not successfully detect complex patterns of
“coupling between amino acids” does not mean that these
couplings do not in fact exist. Rather, viewing the world
through a low power algorithm will inevitably yield a
simple view of the world. It may turn out to be true that the
vast majority of neighboring residues in proteins do not
thermodynamically interact with one another. It would
certainly make the job of understanding how proteins
work easier if this were the case. However, the fact that a
covariance algorithm has low sensitivity does not, in itself,
provide any evidence for or against the hypothesis that
protein energetics are reliably simple.

A defender of the SCA hypothesis might argue that
energetic connectivity, which is the topic of the SCA
hypothesis, and physical distance, which is what we
measured in this study, do not necessarily have to be
linked. The presence of covariation at a distance was in
fact one of the results of the original SCA study.'® Indeed,
we see plenty of covariation at a distance as well. There are
a significant number of pairs of residues in Figure 3(A), for
example, that appear to be highly covarying but are above
the yellow 8 A residue cutoff line. However, the highly
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covarying residues are still, to a statistically significant
extent, closer to each other than one would expect at
random. We argue that even if evolutionary covariance
works at a distance on “chains” of energetically linked
residues, the residues that are within a linked chain
should, on average, be closer to each other than residues
chosen at random. It would be extraordinary if SCA scores
were reliably sensitive to energy below the 99th percentile
when they are reliably indifferent to distance. A more
likely explanation is that the SCA hypothesis is simply
incorrect, at least for all but the most highly covarying
pairs of residues.

Another problem with the SCA hypothesis is the com-
plex relationship between conservation and covariance.
Figure 5(C) shows conservation scores as a function of
covariance for the four correlated mutation algorithms. As
we would expect from our results on artificial alignments
seen in Figure 1, the SCA algorithm yields low scores for
highly conserved columns. This means that if the SCA
hypothesis were true, performing a double mutant cycle
experiment should yield a nearly perfectly additive double
mutation under the SCA algorithm if either or both
residue positions were perfectly conserved. That is, if this
hypothesis were valid, then under the SCA algorithm no
highly conserved residue position in a protein could ever
cooperate with any other residue position to produce a
large emergent, nonadditive effect on free energy. This
prediction simply cannot be true and is clearly incompat-
ible with existing experimental data. For example, it has
been shown through double mutant cycle analysis that two
highly conserved residues in the C-terminal of the human
BK potassium channel do not have independent effects on
the function of the channel.?! It seems unlikely that the
SCA algorithm could be a “good indicator of thermody-
namic coupling in proteins”'® if there is a whole class of
thermodynamically linked conserved residues to which it
is insensitive. This suggests that McBASC, which does not
necessarily give a low score to highly conserved columns,
might be a more appropriate algorithm for use in examin-
ing the SCA hypothesis, although some modification would
be required to take into account perfectly conserved col-
umns. But, even the power of McBASC in outperforming
random pairing algorithms is mostly exhausted below the
90th percentile of McBASC scores [Fig. 5(B)]. We argue,
therefore, that the SCA hypothesis is unlikely to be
generally true, no matter which correlated mutation algo-
rithm is used.

Although searching for energetically linked residues in
all but the very highly covarying residue pairs is likely to
be fruitless with any of the correlated mutation algo-
rithms, it remains a possibility that these covarying
residues will generally display a high degree of energetic
coupling. The overall low power of the SCA algorithm,
however, appears to make it a particularly poor choice for
exploring this sort of SCA-type hypothesis. As we have
seen in our artificial alignments in Figure 1(B), the SCA
algorithm tends to give high scores to columns that are
highly random. Not surprisingly, therefore, the power of
the SCA algorithm can be modestly improved by eliminat-
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ing poorly conserved columns from the alignments (see
Methods section). However, even with the poorly con-
served columns removed,?? the SCA algorithm still substan-
tially underperforms OMES and McBASC. The built-in
ability of the OMES and McBASC algorithms to filter out
highly random columns, together with their higher overall
power, suggests that a research program based on either of
these algorithms is more likely than SCA to meet with
success in exploring the link between the evolutionary
record and energetic connectivity.

CONCLUSION

In the view of correlated mutation algorithms presented
in this article, these algorithms act as a filter of conserva-
tion. A correlated mutation algorithm has a preferred level
of background conservation and within that level of conser-
vation chooses the residue pairs that truly covary. Figure
2(A) suggests that this view is accurate for OMES, SCA,
and MI, which have very constrained regions of back-
ground conservation to which they give high covariance
scores. The situation is more complicated for McBASC,
which gives high scores to a wider range of conservation
than the other algorithms. This is to be expected from
Figure 1 where we see that McBASC acts as a “covarying
or highly conserved” filter whereas the other algorithms
act as “covarying but not highly conserved” filters. Despite
the more complex relationship between McBASC and
conservation, it appears from Figures 2(B) and 5(C) that
the very highest McBASC scores are given to a background
conservation level similar to the conservation level seen in
the highest OMES scores. This similarity in sensitivity to
background conservation between OMES and McBASC for
high covariance scores is matched by a similar level of
performance in our set of 224 Pfam families [Fig. 3(C)].
This similar level of performance suggests that in Pfam
alignments, at least, covariance more often occurs at the
background conservation frequency expected by OMES
and McBASC than by SCA or MI. It is significant, though,
that SCA and MI do have some power [Fig. 3(C)] and in a
number of alignments find a statistically significant num-
ber of physically close residues, despite favoring columns
that are much less conserved than OMES and McBASC
[Figs. 2(C) and 5(C)]. This suggests that some real covari-
ance does occur in conservation “frequencies” to which
OMES and McBASC are insensitive. Moreover, because
the covariance algorithms generally choose distinct resi-
due pairs, it may be possible to combine them in some way
to produce an algorithm sensitive to a wide spectrum of
background conservation frequencies.

We have only evaluated these algorithms for Pfam
alignments. Of course, methods of generating alignments
other than Pfam might yield very different results because
the average background conservation generated by other
alignment methods will inevitably be different than that
generated by the Pfam procedure. It may very well be that
there are alignment methods that produce a lower overall
average conservation, and for these methods SCA or MI
might show higher power than they do for the Pfam
alignments. Careful consideration of the effects of conser-
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vation in relation to a given set of alignments may help
investigators elicit the most information out of these
notoriously finicky, low powered algorithms.

NOTE ADDED IN PROOF

Supplementary materials are hosted at http:www.
afodor.net.

While this article was in press, we published another
paper that explicitly considered the use of correlated
mutation algorithms to discover evolutionarily conserved
energetic pathways. We refer interested readers to Fodor
A. and Aldrich R., On Evolutionary Conservation of Ther-
modynamic Coupling in Proteins, JBC, 2004, in press.
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