Tensorlab
User Guide

Laurent Sorber*#8 Marc Van Barel*  Lieven De Lathauwer*$

Contents
1 Getting started 1
2 Data sets: dense, incomplete and sparse tensors 5
2.1 Representation . . . . . . ... 5
2.2 Tensor operations . . . . . . . .. ... 6
3 Canonical polyadic decomposition 10
3.1 Problem and tensor generation . . . . . . .. ... 10
3.2 Computingthe CPD . . . . . . . . . 11
3.3 Choosing the number of rank-oneterms R . . . . . . . . . .. .. ... .. 12
4 Low multilinear rank approximation 13
4.1 Problem and tensor generation . . . . .. .. ... L. 14
42 Computinga LMLRA . . . . . . . 14
4.3 Choosing the size of the core tensor . . . . . . . . . . . ... ... ... 16
5 Block term decomposition 17
5.1 Problem and tensor generation . . . . . . . . . .. ... 17
5.2 Computinga BTD . . . . . .. . 18
6 Structured data fusion 19
6.1 Domain specific language for SDF . . . . . . . . . ... ... ... ... 20
6.2 Implementing a new factor structure . . . . . .. ... oL 28
7 Complex optimization 29
7.1 Complex derivatives . . . . . . . . ... 30
7.2 Nonlinear least squares . . . . . . . . . . . ... ... 36
7.3 Unconstrained nonlinear optimization. . . . . . . . . . .. ... ... ... 40
8 Global minimization of bivariate functions 42
8.1 Stationary points of polynomials and rational functions . . . . . . .. . .. 43
8.2 Isolated solutions of a system of two bivariate polynomials . . . . . . . .. 45

*NALAG, Department of Computer Science, KU Leuven, Celestijnenlaan 200A, BE-3001 Leuven,
Belgium (Laurent.Sorber@cs.kuleuven.be, Marc.VanBarel@cs.kuleuven.be).

tGroup Science, Engineering and Technology, KU Leuven Kulak, E. Sabbelaan 53, BE-8500 Kortrijk,
Belgium (Lieven.DelLathauwer@kuleuven-kulak.be).

tSTADIUS, Department of Electrical Engineering (ESAT), KU Leuven, Kasteelpark Arenberg 10,
BE-3001 Leuven, Belgium (Lieven.Del athauwer®@esat.kuleuven.be).

§iMinds Future Health Department, Kasteelpark Arenberg 10, BE-3001 Leuven, Belgium.



1 GETTING STARTED

1 Getting started

What is Tensorlab? In short, Tensorlab is a MATLAB toolbox for rapid prototyping of
(coupled) tensor decompositions with structured factors. In Tensorlab, data sets are stored
as (possibly incomplete) vectors, matrices and higher-order tensors. By mixing different types
of decompositions and factor structures, a vast amount of factorizations can be computed.
Users can define their own factor structures, or choose from the library of preimplemented
structures, including nonnegativity, orthogonality, Toeplitz and Vandermonde matrices to
name a few.

Section 2 covers how dense, incomplete and sparse data sets are represented as tensors in
Tensorlab and the basic operations on such tensors. Tensor decompositions such as the
canonical polyadic decomposition (CPD), low multilinear rank approximation (LMLRA)
and block term decompositions (BTD) are discussed in Sections 3, 4 and 5, respectively.
Structured data fusion (SDF), with which multiple data sets can be jointly factorized
while imposing structure on the factors is covered in Section 6. Many of the algorithms
to accomplish these tasks are based on complex optimization, that is, optimization of
functions in complex variables. Section 7 introduces the necessary concepts and shows
how to solve different types of complex optimization problems. Finally, Section 8 treats
global optimization of bivariate (and polyanalytic) polynomials and rational functions, which
appear as subproblems in tensor optimization.

Installation Unzip Tensorlab to any directory, browse to that location in MATLAB and
run

addpath(pwd); % Add the current directory to the MATLAB search path.
savepath; % Save the search path for future sessions.

Requirements Tensorlab requires MATLAB 7.9 (R2009b) or higher because of its depen-
dency on the tilde operator ~. If necessary, older versions of MATLAB can use Tensorlab
by replacing the tilde in [~ and ~, with tmp. To do so on Linux/OS X, browse to Tensorlab
and run

sed -1 "" 's/\[~/[tmp/g;s/~,/tmp,/g"' *.m

in your system's terminal. However, most of the functionality in Tensorlab requires at the
very minimum MATLAB 7.4 (R2007a) because of its extensive use of bsxfun.

Octave is only partially supported, mainly because it coerces nested functions into subfunc-
tions. The latter do not share the workspace of their parent function, which is a feature
used by Tensorlab in certain algorithms.

Contents.m [f you have installed Tensorlab to the directory tensorlab, run doc tensorlab
from the command line for an overview of the toolboxes functionality (or, if that fails, try
help(pwd)). Both commands display the file Contents.m, shown below. Although this user
guide covers the most important aspects of Tensorlab, Contents.m shows a short one line
description of all exported functions.
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TENSORLAB
Version 2.02, 2014-05-07

BLOCK TERM DECOMPOSITION

Algorithms

btd_minf - BTD by unconstrained nonlinear optimization.

btd_nls - BTD by nonlinear least squares.
Initialization

btd_rnd - Pseudorandom initialization for BTD.
Utilities

btdgen - Generate full tensor given a BTD.

btdres - Residual of a BTD.

CANONICAL POLYADIC DECOMPOSITION

Algorithms
cpd - Canonical polyadic decomposition.
cpd_als - CPD by alternating least squares.
cpd_minf - CPD by unconstrained nonlinear optimization.
cpd_nls - CPD by nonlinear least squares.
cpd3_sd - CPD by simultaneous diagonalization.
cpd3_sgsd - CPD by simultaneous generalized Schur decomposition.
Initialization
cpd_gevd - CPD by a generalized eigenvalue decomposition.
cpd_rnd - Pseudorandom initialization for CPD.
Line and plane search
cpd_aels - CPD approximate enhanced line search.
cpd_els - CPD exact line search.
cpd_eps - CPD exact plane search.
cpd_1sb - CPD line search by Bro.
Utilities
cpderr - Errors between factor matrices in a CPD.
cpdgen - Generate full tensor given a polyadic decomposition.
cpdres - Residual of a polyadic decomposition.
rankest - Estimate rank.

COMPLEX OPTIMIZATION
Nonlinear least squares

nls_gncgs - Nonlinear least squares by Gauss-Newton with CG-Steihaug.
nls_gndl - Nonlinear least squares by Gauss-Newton with dogleg trust
region.
nls_Im - Nonlinear least squares by Levenberg-Marquardt.
nlsb_gndl - Bound-constrained NLS by projected Gauss-Newton dogleg TR.
Unconstrained nonlinear optimization
minf_lbfgs - Minimize a function by L-BFGS with line search.
minf_lbfgsdl - Minimize a function by L-BFGS with dogleg trust region.
minf_ncg - Minimize a function by nonlinear conjugate gradient.
minf_srlcgs - Minimize a function by SR1 with CG-Steihaug.
Utilities
deriv - Approximate gradient and Jacobian.
1s_mt - Strong Wolfe line search by More-Thuente.

mpcg - Modified preconditioned conjugate gradients method.
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LOW MULTILINEAR
Algorithms
Imlra
Imlra_hooi
Imlra_minf
Imlra_nls
Imlra3_dgn
Imlra3_rtr
mlsvd
Initialization
Imlra_aca
Imlra_rnd
Utilities
Imlraerr
Imlragen
Imlrares
mlrank
mlrankest

STRUCTURED DATA

Algorithms
sdf_minf
optimization.
sdf_nls

Structure
struct_abs
struct_band

struct_cell2mat

struct_conj

RANK APPROXIMATION

- Low multilinear rank approximation.

- LMLRA by higher-order orthogonal iteration.

- LMLRA by unconstrained nonlinear optimization.

- LMLRA by nonlinear least squares.

- LMLRA by a differential-geometric Newton method.

- LMLRA by a Riemannian trust region method.

- (Truncated) multilinear singular value decomposition.

- LMLRA by adaptive cross-approximation.
- Pseudorandom initialization for LMLRA.

- Errors between factor matrices in a LMLRA.

- Generate full tensor given a core tensor and factor matrices.
- Residual of a LMLRA.

- Multilinear rank.

- Estimate multilinear rank.

FUSION

- Structured data fusion by unconstrained nonlinear

- Structured data fusion by nonlinear least squares.

Absolute value.
- Band matrix.

Convert the contents of a cell array into a matrix.
- Complex conjugate.

struct_ctranspose - Complex conjugate transpose.

struct_diag
struct_gram
struct_hankel
struct_inv

- Diagonal matrix.
- Gramian matrix.
- Hankel matrix.

- Matrix inverse.

struct_invsgrtm - Matrix inverse square root.

struct_invtransp - Matrix inverse transpose.

struct_LL1 - Structure of the third factor matrix in a rank-(Lr,Lr,1)
BTD.

struct_log - Natural logarithm.

struct_matvec
struct_nonneg

- Matrix-vector and matrix-matrix product.
- Nonnegative array.

struct_normalize - Normalize columns to unit norm.

struct_orth
struct_plus
struct_poly
struct_power

- Rectangular matrix with orthonormal columns.
- Plus.

- Matrix with columns as polynomials.

- Array power.

struct_rational - Matrix with columns as rational functions.

struct_rbf

struct_sigmoid

struct_sqrt
struct_sum

- Matrix with columns as sums of Gaussian RBF kernels.
- Constrain array elements to an interval.

- Square root.

- Sum of elements.
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struct_times
struct_toeplitz
struct_transpose
struct_tridiag
struct_tril
struct_triu
struct_vander

UTILITIES
Clustering
gap -
kmeans =
Polynomials
polymin =
polymin2 =
polyval2 =
polysol2 =
ratmin =
ratmin2 =
Statistics
cum3 =
cum4 =
scov =
Tensors
dotk =
fmt =
frob =
ful =
kr =
kron =
mat2tens -
mtkronprod -
mtkrprod =
noisy =
sumk =
tens2mat =
tens2vec =
tmprod =
vec2tens =
Visualization
slice3 =
spy3 =
surf3 =
voxel3 -

- Times.

- Toeplitz matrix.

- Transpose.

- Tridiagonal matrix.

- Lower triangular matrix.
- Upper triangular matrix.
- Vandermonde matrix.

Optimal clustering based on the gap statistic.
Cluster multivariate data using the k-means++ algorithm.

Minimize a polynomial.

Minimize bivariate and real polyanalytic polynomials.
Evaluate bivariate and univariate polyanalytic polynomials.
Solve a system of two bivariate polynomials.

Minimize a rational function.

Minimize bivariate and real polyanalytic rational functions.

Third-order cumulant tensor.
Fourth-order cumulant tensor.
Shifted covariance matrices.

Dot product in K-fold precision.

Format data set.

Frobenius norm.

Convert formatted data set to an array.
Khatri-Rao product.

Kronecker product.

Tensorize a matrix.

Matricized tensor Kronecker product.
Matricized tensor Khatri-Rao product.
Generate a noisy version of a given array.
Summation in K-fold precision.
Matricize a tensor.

Vectorize a tensor.

Mode-n tensor-matrix product.

Tensorize a vector.

Visualize a third-order tensor with slices.
Visualize a third-order tensor's sparsity pattern.
Visualize a third-order tensor with surfaces.
Visualize a third-order tensor with voxels.
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2 Data sets: dense, incomplete and sparse tensors

2.1 Representation

Dense tensors Scalars, vectors and matrices are zero-, one- and two-dimensional tensors,
respectively. Arrays with three or more dimensions are called higher-order tensors. In
Tensorlab, data sets are represented as dense, sparse or incomplete tensors. A dense tensor
is simply a MATLAB array, e.g., A = randn(10,10) or T = randn(5,5,5). All functions in
Tensorlab accept dense tensors, and many (but not all) also accept incomplete and sparse
tensors transparently.

Incomplete tensors An incomplete tensor is a data set in which some (or most) of the
entries are unknown. To create an incomplete tensor, define a structure containing the
tensor's known elements, their positions, the tensor's size and an incomplete flag as:

T.val = randn(3,1);

T.sub = [123; 456; 7 8 9];
T.size = [9 9 9];

T.incomplete = true;

and then call
T = fmt(T);

to convert the tensor to Tensorlab format. This creates a 9 x 9 x 9 tensor T with three known
elements at positions (1,2, 3), (4,5,6) and (7,8,9). Alternatively, the user may supply the
linear indices in T.ind instead of the subindices T.sub. To convert linear indices to subindices
or vice versa, see the MATLAB functions ind2sub and sub2ind, respectively.

Another way to create an incomplete tensor is to create a dense tensor in which the unknown
values are NaN. For example

T = randn(5,5,5);
T(1:31:end) = NaN;
T = fmt(T);

creates a 5 x 5 x 5 tensor T with diagonal elements equal to NaN and formats it as an
incomplete tensor. If there are no entries equal to NaN, then fmt(T) returns T itself. To
convert an incomplete tensor back to a MATLAB array, use ful(T).

Sparse tensors A sparse tensor is a data set in which most of the entries are zero. To
create a sparse tensor, define a structure containing the tensor’s nonzero elements in the
same way as for incomplete tensors and set the sparse flag:

T.val = randn(3,1);

T.sub =[123; 456; 7 8 9];
T.size = [9 9 9];

T.sparse = true;
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before formatting the tensor with T = fmt(T).

Another way to create a sparse tensor is to create a dense tensor in which at most 5% of
the entries are nonzero. For example

T = zeros(5,5,5);
T(1:31:end) = 1;
T = fmt(T);

creates a 5 x 5 x 5 diagonal tensor T with diagonal elements equal to 1 and formats it as a
sparse tensor. If not enough entries are zero, then fmt(T) returns T itself. To convert a
sparse tensor back to a MATLAB array, use ful(T).

2.2 Tensor operations

2.2.1 For dense tensors

Matricization and tensorization A dense tensor T can be flattened into a matrix with
M = tens2mat(T,mode_row,mode_col). Let size_tens = size(T), then the resulting matrix M
is of size prod(size_tens(mode_row)) by prod(size_tens(mode_col)). For example,

T = randn(3,5,7,9);
M = tens2mat(T,[1 31,[4 2]);
size(M)

outputs [21 45]. In tens2mat, a given column (row) of M is generated by fixing the indices
corresponding to mode_col (mode_row) and then looping over the remaining indices in the
order mode_row (mode_col). To transform a matricized tensor M back into its original size

size_tens, use mat2tens(M,size_tens,mode_row,mode_col).

The most common use case is to matricize a tensor by placing its mode-n vectors as
columns in a matrix, also called a mode-n matricization. This can be achieved by

T randn(3,5,7);
n=2;
tens2mat(T,n);

where the optional argument mode_col is implicitly equal to [1:n-1 n+1:ndims(T)].

Tensor-matrix product In a mode-n tensor-matrix product, the tensor's mode-n vectors
are premultiplied by a given matrix. In other words, Uxtens2mat(T,n) is a mode-n matriciza-
tion of the mode-n tensor-matrix product T+, U. The function tmprod(T,U,mode) computes
the tensor-matrix product T spoge¢1y U{1} *mode(2y U{2} - --. For example,

T = randn(3,5,7);

U = {randn(11,3),randn(13,5),randn(15,7)};
S = tmprod(T,U,1:3);

size(S)

outputs [11 13 15]. To compute a single tensor-matrix product, it is not necessary to use
a cell array. The following is an example of a single mode-2 tensor-matrix product:
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randn(3,5,7);
S = tmprod(T,randn(13,5),2);

Kronecker and Khatri-Rao product Tensorlab includes a fast implementation of the
Kronecker product A ® B with the function kron(A,B), which overrides MATLAB's built-in
implementation. Let A and B be matrices of size | by J and K by L, respectively, then the
Kronecker product of A and B is the /K by JL matrix

3118 cee aUB
A® B = : - :
a/lB s a/_/B
The Khatri-Rao product A® B can be computed by kr(A,B). Let A and B both be matrices

with N columns, then the Khatri—-Rao product of A and B is the column-wise Kronecker
product

A@B::[al(}bbl - ay byl .

More generally, kr(A,B,C,...) and kr(U) compute the string of Khatri-Rao products ((A ®
B)®C)®--- and ((U{1} ® U{2}) ®U{3}) ®---, respectively.

Visualization Tensorlab offers three methods to visualize dense third-order tensors: slice3,
surf3 and voxel3. The following example demonstrates these methods on the amino acids
dataset [1]:

url = 'http://www.models.life.ku.dk/go-engine?filename=amino.mat"';
urlwrite(url, 'amino.mat'); % Download amino.mat in this directory.
load amino X;

figure(1); voxel3(X);

figure(2); surf3(X);

figure(3); slice3(X);

The resulting MATLAB figures can be seen in Figure 2.1. By default, the voxel3 plot
uses a fast but not so accurate renderer. To enable the slow but accurate renderer, use
voxel3(X, 'fast',false). See the help information for more rendering options.



2 DATA SETS: DENSE, INCOMPLETE AND SPARSE TENSORS

(a) voxel3

(b) surf3

201

(c) slice3s

Figure 2.1: Three functions for visualizing third-order tensors in Tensorlab.
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2.2.2 For dense, incomplete and sparse tensors

Frobenius norm The Frobenius norm of a tensor is the square root of the sum of
square magnitudes of its (known) elements. Given a tensor T, its Frobenius norm can be
computed with frob(T). If the tensor is dense, this is equivalent with norm(T(:)), i.e., the
two-norm of the vectorized tensor. The squared Frobenius norm can be computed with
frob(T, 'squared').

Matricized tensor Kronecker product Often, algorithms for computing tensor decompo-
sitions do not explicitly need matricized tensors or Kronecker products, but rather the matri-
cized tensor Kronecker product tens2mat(T,n)*kron(U([end:-1:n+1 n-1:-1:11)), where the
second operand represents the Kronecker product U{end} ® - - - @ U{n+1} @ U{n-1} ® - - - @ U{13.
The function mtkronprod(T,U,n) computes the result of this operation without explicitly
computing either of the operands and without permuting the elements of the tensor T in
memory.

Another useful way of interpreting this product is as the result of

mode = [1:n-1 n+1:1length(U)1;
Ut = cellfun(@transpose,U, 'UniformOutput', false);
tens2mat (tmprod(T,Ut(mode),mode),n)

Matricized tensor Khatri-Rao product Similarly, algorithms for computing tensor decom-
positions usually don’t explicitly need matricized tensors or Khatri-Rao products, but rather
the matricized tensor Khatri-Rao product tens2mat(T,n)*kr(U([end:-1:n+1 n-1:-1:11)).
The function mtkrprod(T,U,n) computes the result of this operation without explicitly
computing either of the operands and without permuting the elements of the tensor T in
memory.

Another useful way of interpreting the rth column of this product is as the result of

mode = [1:n-1 n+1:1length(U)1;
Urt = cellfun(@(u)u(:,r).",U, 'UniformOutput"',false);
tens2mat (tmprod(T,Urt(mode),mode),n)

Creating noisy versions of (cell) arrays The noisy function can be used to create a
noisy version of a MATLAB array, of a (nested) cell array of arrays and of incomplete or
sparse tensors. For example,

U = {randn(10,2),randn(15,2),randn(20,2)};
SNR = 20;
Uhat = noisy(U,SNR);

creates a cell array U and a noisy version of that cell array called Uhat with a signal-to-noise
ratio of 20 dB.
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3 Canonical polyadic decomposition

2 a
s R [ s
T ~ b1 bR
a ar

Figure 3.1: A canonical polyadic decomposition of a third-order tensor.

The canonical polyadic decomposition (CPD) [2,7-10] approximates a tensor with a sum of
R rank-one tensors. Let A o B denote the outer product between an N-dimensional tensor
A and an M-dimensional tensor B, then Ao B is the (N + M)-dimensional tensor defined
by (Ao B)jiiyjijps = @ir-eiy = bjs-juy- FOr example, let a, b and ¢ be nonzero vectors in R”,
then aob=a-b' is a rank-one matrix and ao bo c is defined to be a rank-one tensor.
Let T be a tensor of dimensions /1 X [» x --- x [y, and let U{n} be matrices of size [, X R,
then

R
TA > U{13(:,r) oU{23(:,r) o+ o UN}(:,r)
r=1

is a CPD of T in R rank-one terms. A visual representation of this decomposition in the
third-order case is shown in Figure 3.1.

3.1 Problem and tensor generation

Generating pseudorandom factor matrices A cell array of pseudorandom factor matrices
U = {U{1},U{2}, ...} corresponding to a CPD of a tensor of dimensions size_tens in R
rank-one terms can be generated with

size_tens = [7 8 9]; R = 4;
U = cpd_rnd(size_tens,R);

By default cpd_rnd generates U{n} as randn(size_tens(n),R). Other generators can also be
specified with an options structure, e.g.,

options.Real = @rand;
options.Imag = @rand;
U = cpd_rnd(size_tens,R,options);

and the inline equivalent
U = cpd_rnd(size_tens,R,struct('Real’,@rand, 'Imag',@rand));

generate U{n} as rand(size_tens(n),R)+rand(size_tens(n),R)*1i

Generating the associated full tensor  Given a cell array of factor matricesU = {U{13},U{2},...},
its associated full tensor T can be computed with

10
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T = cpdgen(U);
This is equivalent to

M = U{13}*kr(U(end:-1:2)).";
size_tens = cellfun('size',U,1);
T = mat2tens(M,size_tens,1);

3.2 Computing the CPD

The principal method To compute the CPD of a dense, sparse or incomplete tensor T
in R rank-one terms, call cpd(T,R). For example,

% Generate pseudorandom factor matrices U and their associated full tensor T.
size_tens = [7 8 9]1; R = 4;

U = cpd_rnd(size_tens,R);

T = cpdgen(U);

32

Compute the CPD of the full tensor T.
Uhat = cpd(T,R);

generates a real rank-4 tensor and decomposes it. Internally, cpd first compresses the tensor
using a low multilinear rank approximation (see Section 4) if it is worthwhile, then chooses a
method to generate an initialization Ue (e.g., cpd_gevd), after which it executes an algorithm
to compute the CPD given the initialization (e.g., cpd_nls) and finally decompresses the
tensor and refines the solution (if compression was applied).

Setting the options The different steps in cpd are customizable by supplying the method
with an options structure (see help cpd for more information), e.g.,

options.Display = true; % Show progress on the command line.
options.Initialization = @cpd_rnd; % Select pseudorandom initialization.
options.Algorithm = @cpd_als; % Select ALS as the main algorithm.
options.AlgorithmOptions.LineSearch = @cpd_els; % Add exact line search.
options.AlgorithmOptions.TolFun = 1e-12; % Set algorithm stop criteria.
options.AlgorithmOptions.TolX = 1e-12;

Uhat = cpd(T,R,options);

The structures options.InitializationOptions, options.AlgorithmOptions and
options.RefinementOptions will be passed as options structures to the algorithms correspond-

ing to initialization, algorithm and refinement steps, respectively. For example, in the example
above cpd will call cpd_als as cpd_als(T,options.Initialization(T,R),options.AlgorithmOptions)

Viewing the algorithm output Each step may also output additional information specific
to that step. For instance, most CPD algorithms such as cpd_als will keep track of the
number of iterations and objective function value. To obtain this information, capture the
second output:

11
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[Uhat,output] = cpd(T,R,options);
and inspect its fields, for example by plotting the objective function value:

semilogy(@:output.Algorithm.iterations,sqrt(2*xoutput.Algorithm.fval));
xlabel('iteration');

ylabel('frob(cpdres(T,U))");

grid on;

Computing the error The residual between a tensor T and its CPD approximation defined
by Uhat can be computed with

res = cpdres(T,Uhat);

If the tensor is dense, then the result is equivalent to cpdgen(Uhat)-T. The relative error
between the tensor and its CPD approximation can then be computed as

relerr = frob(cpdres(T,Uhat))/frob(T);

One can also consider the relative error between the factor matrices U{n} that generated T
and their approximations Uhat{n} computed by cpd. Due to the permutation and scaling
indeterminacies of the CPD, the columns of Uhat may need to be permuted and scaled to
match those of U before comparing them to each other. The function cpderr takes care of
these indeterminacies and then computes the relative error between the given two sets of
factor matrices. l.e.,

relerr = cpderr(U,Uhat);

returns a vector in which the nth entry is the relative error between U{n} and Uhat{n}. This
method is also applicable when Uhat{n} is an under- or overfactoring of the solution, meaning
Uhat{n} comprises fewer or more rank-one terms than the tensor's rank, respectively. In
the underfactoring case, Uhat{n} is padded with zero-columns, and in the overfactoring
case only the columns in Uhat{n} that best match those in U{n} are kept. See the help
information for more details.

3.3 Choosing the number of rank-one terms R

To help choose the number of rank-one terms R, use the rankest tool. Running rankest(T)
on a dense, sparse or incomplete tensor T plots an L-curve which represents the balance
between the relative error of the CPD and the number of rank-one terms R. The following
example applies rankest on the amino acids dataset [1]:

url = 'http://www.models.life.ku.dk/go-engine?filename=amino.mat"';
urlwrite(url, 'amino.mat'); % Download amino.mat in this directory.
load amino X;

rankest(X);

The resulting figure is shown in Figure 3.2. The algorithm computes the CPD of the
given tensor for various values of R, starting at the smallest integer for which the lower
bound on the relative error (displayed as a solid blue line) is smaller than the specified

12
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options.MinRelErr. The lower bound is based on the truncation error of the tensor’s
multilinear singular values [5]. For incomplete and sparse tensors, this lower bound is not
available and the first value to be tried for R is 1. The number of rank-one terms is
increased until the relative error of the approximation is less than options.MinRelErr. In a
sense, the corner of the resulting L-curve makes an optimal trade-off between accuracy and
compression. The rankest tool computes the number of rank-one terms R corresponding to
the L-curve corner and marks it on the plot with a square. This optimal number of rank-one
terms is also rankest's first output. By capturing it as R = rankest(X), the L-curve is no
longer plotted.

1(:;0 T T T T T T
o L-curve corneratR=8

CPD error
—— Lower bound on error

-
o

frob(cpdres(T,U))/frob(T)

-
o
S

MinReIErr

Figure 3.2: The rankest tool for choosing the number of rank-one terms R in a CPD.

4 Low multilinear rank approximation

A4

S v

Q

Figure 4.1: A low multilinear rank approximation of a third-order tensor.

A low multilinear rank approximation (LMLRA) [10,17] approximates a tensor by a smaller
(core) tensor and a set of factor matrices. Let T and S be tensors of dimensions /1 X [o X« + - X Iy
and J; x Jb x -+ X Jy, respectively, let U{n} be matrices of size I, x J, (J, < /,) for
1 < n <N, and let -, denote the mode-n tensor-matrix product (see Section 2.2.1),
then

TS U{1} 2 U{2} e3 -+ o U{N}

is a LMLRA of the tensor T in the core tensor S and factor matrices U{n}. A visual
representation of this decomposition in the third-order case is shown in Figure 4.1.

13



4 LOW MULTILINEAR RANK APPROXIMATION

4.1 Problem and tensor generation

Generating pseudorandom factor matrices and core tensor A cell array of pseudoran-
dom factor matrices U = {U{13},U{2}, ...} with orthonormal columns and a core tensor S of
dimensions size_core corresponding to a LMLRA of a tensor of dimensions size_tens can
be generated with

size_tens = [17 19 211;
size_core = [3 5 7];
[U,S] = Imlra_rnd(size_tens,size_core);

By default Imlra_rnd generates U{n} and S using randn, after which U{n} is orthogonalized.
Other generators can also be specified with an options structure, e.g.,

options.Real = @rand;
options.Imag = @rand;
[U,S] = Imlra_rnd(size_tens,size_core,options);

and its inline equivalent

[U,S] = Imlra_rnd(size_tens,size_core,struct('Real’',@rand, 'Imag',@rand));

Generating the associated full tensor Given a cell array of factor matricesU = {U{13},U{2}, ..

and core tensor S, its associated full tensor T can be computed with
T = 1lmlragen(U,S);
This is equivalent to

T = tmprod(S,U,1:1length(U));

4.2 Computing a LMLRA

The principal method To compute a LMLRA of a dense, sparse or incomplete tensor T
with a core tensor of size size_core, call Imlra(T,size_core). For example,

% Generate pseudorandom LMLRA (U,S) and associated full tensor T.
size_tens = [17 19 21];

size_core = [3 5 7];

[U,S] = Imlra_rnd(size_tens,size_core);

T = 1mlragen(U,S);

% Compute a LMLRA of a noisy version of T with 20dB SNR.
[Uhat,Shat] = lmlra(noisy(T,20),size_core);

generates a real rank-(3,5,7) tensor and computes its low multilinear rank approximation.
Internally, Imlra chooses a method to generate an initialization Ue and Se@ (e.g., Imlra_aca),
after which it executes an algorithm to compute the LMLRA given the initialization (e.g.,
Imlra_nls).

14
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4 LOW MULTILINEAR RANK APPROXIMATION

Setting the options The two steps in Imlra are customizable by supplying the method
with an options structure (see help 1lmlra for more information), e.g.,

options.Display = true; % Show progress on the command line.
options.Initialization = @lmlra_rnd; % Select pseudorandom initialization.
options.Algorithm = @lmlra_nls; % Select NLS as the main algorithm.
options.AlgorithmOptions.TolFun = 1e-12; % Set stop criteria.
options.AlgorithmOptions.TolX = 1e-12;

[Uhat,Shat] = 1mlra(T,size_core,options);

The structures options.InitializationOptions and options.AlgorithmOptions will be passed
as options structures to the algorithms corresponding to initialization and algorithm steps,
respectively.

Viewing the algorithm output Each step may also output additional information specific
to that step. For instance, most LMLRA algorithms such as Imlra_hooi will keep track
of the number of iterations and the difference in subspace angle of every two successive
iterates sangle. To obtain this information, capture the third output:

[Uhat,Shat,output] = lmlra(T,size_core,options);
and inspect its fields, for example by plotting the objective function value:

semilogy(@:output.Algorithm.iterations,sqrt(2*output.Algorithm.fval));
xlabel('iteration');

ylabel('frob(Imlrares(T,U))"');

grid on;

Computing the error The residual between a tensor T and its LMLRA defined by Uhat
and Shat can be computed with

res = Imlrares(T,Uhat,Shat);

If the tensor is dense, then the result is equivalent to 1mlragen(Uhat,Shat)-T. The relative
error between the tensor and its LMLRA can then be computed as

relerr = frob(lmlrares(T,Uhat,Shat))/frob(T);

If the factor matrices U{n} that generated T are known, the subspace angle between them
and their approximations Uhat{n} computed by 1mlra is also a measure of the approximation
error. The function 1Imlraerr computes the subspace angle between the given two sets of
factor matrices. In other words,

sangle = lmlraerr(U,Uhat);

returns a vector in which the nth entry is subspace(U{n},Uhat{n}).

15



4 LOW MULTILINEAR RANK APPROXIMATION

4.3 Choosing the size of the core tensor

For dense tensors, use the mlrankest tool to help determine the size of the core tensor
size_core. Running mlrankest(T) plots an L-curve which represents the balance between an
upper bound [5] on the relative error of a LMLRA of T for different core tensor sizes, and
the LMLRA's compression ratio. The following example applies mlrankest on the amino
acids dataset [1]:

url = 'http://www.models.life.ku.dk/go-engine?filename=amino.mat"';
urlwrite(url, 'amino.mat'); % Download amino.mat in this directory.
load amino X;
mlrankest(X);

The resulting figure is shown in Figure 4.2. The corner of this L-curve is often a good
estimate of the optimal trade-off between accuracy and compression. The core tensor size
size_core corresponding to the L-curve corner is marked on the plot with a square and is
also mlrankest's first output. By capturing it as in size_core = mlrankest(X), the L-curve
is no longer plotted. All together, a LMLRA of the amino acids dataset can be computed
in only a few lines:

url = 'http://www.models.life.ku.dk/go-engine?filename=amino.mat"';
urlwrite(url, 'amino.mat'); % Download amino.mat in this directory.

load amino X;

size_core = mlrankest(X); % Optimal core tensor size at L-curve corner.
[U,S] = Imlra(X,size_core);

Additionally, the compression and relative error of other choices of size_core can be viewed
by using the figure's Data Cursor tool.

-1
C 10
= Core tensor size: [5 6 22]
L Compression: 5.2736%
% Relative error: 0.01274
S10°F '
=
[
2
o
E
= 10 ¢
©
E
o L-curve corner at [5 3 3]
104 1 Upper bound on error
—— T-MLSVD error

E2 -1 0
10 10 10

(numel(U)+numel(S))/numel(T)

Figure 4.2: The mlrankest tool for choosing the core tensor size size_core in a LMLRA.
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5 BLOCK TERM DECOMPOSITION

5 Block term decomposition

My

Q

T Ul 1 SR VR

Ur

Figure 5.1: A block term decomposition of a third-order tensor.

A block term decomposition (BTD) [10,17] approximates a tensor by a sum of low multilinear
rank terms. Let T be a tensor of dimensions /1 X [» X -+ X [y and let U{r} represent the
rth block term in the BTD. More specifically, let U{r}{N+13} be a core tensor of dimensions
JY) X Jér) XX J,(V’) and let U{r}{n} be matrices of size /, x J\"” (J,(,’) <I,)for1 <n<N,
then

R
T~ ZU{F}{NH} 1 U{rH{13 2 U{r}{2} «3 - -~ o U{r}{N}
r=1

isa BTD of the tensor T in the block terms U{r}. A visual representation of this decomposition
in the third-order case is shown in Figure 5.1.

5.1 Problem and tensor generation

Generating pseudorandom factor matrices and core tensor A cell array of block terms
U = {U{1},U{2}, ...} in which the rth term has a core tensor U{r}{end} of size size_core{r}
corresponding to a BTD of a tensor of dimensions size_tens can be generated with

size_tens = [17 19 211;
size_core = {[3 5 7]1,[6 3 51,[4 3 413};
U = btd_rnd(size_tens,size_core);

By default btd_rnd generates U{r}{n} using randn, after which the factor matrices U{r}{1:N}
are orthogonalized. Other generators can also be specified with an options structure,

eq.,

options.Real = @rand;
options.Imag = @rand;
[U,S] = btd_rnd(size_tens,size_core,options);

and its inline equivalent

[U,S] = btd_rnd(size_tens,size_core,struct('Real’,@rand, 'Imag',@rand));

Generating the associated full tensor Given a cell array of block terms U = {U{1},U{2}, ...},
its associated full tensor T can be computed with

T = btdgen(U);

17



5 BLOCK TERM DECOMPOSITION

This is equivalent to

R = length(U);
N = length(U{1})-1;
size_tens = cellfun('size',U{1}(1:N),1);
T = zeros(size_tens);
for r = 1:R
T = T+tmprod (U{r}{N+13},U{r}(1:N),1:N);
end

5.2 Computing a BTD

With a specific algorithm Currently, the user must generate his or her own initialization
and select a specific (family of) algorithm(s) such as btd_nls or btd_minf to compute the
BTD given the initialization.

To compute a BTD of a dense, sparse or incomplete tensor T given an initialization Ue, run
btd_nls(T,U@). For example,

% Generate pseudorandom BTD U and associated full tensor T.
size_tens = [17 19 211;

size_core = {[2 2 2],[2 2 2],[2 2 2]3%};

U = btd_rnd(size_tens,size_core);

T = btdgen(U);

2

Generate an initialization U@ and compute the BTD with nonlinear least squares.
U0 = noisy(U,20);
Uhat = btd_nls(T,U0);

generates a tensor T as the sum of three real rank-(2,2,2) tensors and then computes its
BTD.

Setting the options The selected algorithm may be customizable by supplying the method
with an options structure (see the relevant help for more information), e.g.,

options.Display = 5; % Show convergence progress every 5 iterations.
options.MaxIter = 200; % Set stop criteria.

options.TolFun = 1e-12;

options.TolX = 1e-12;

Uhat = btd_nls(T,U®@,options);

Viewing the algorithm output The selected method also returns output specific to the
algorithm, such as the number of iterations and the algorithm'’s objective function value.
To obtain this information, capture the second output:

[Uhat,output] = btd_nls(T,UQ,options);
and inspect its fields, for example by plotting the objective function value:

semilogy(@:output.iterations,sqrt(2*output.fval));
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6 STRUCTURED DATA FUSION

xlabel('iteration');
ylabel('frob(btdres(T,U))");
grid on;

Computing the error The residual between a tensor T and its BTD defined by Uhat can
be computed with

res = btdres(T,Uhat);

If the tensor is dense, then the result is equivalent to btdgen(Uhat)-T. The relative error
between the tensor and its BTD can then be computed as

relerr = frob(btdres(T,Uhat))/frob(T);

6 Structured data fusion

Variables Factors Factorizations

Zl:| — x(a) \ L+ /
MO L
Z — x(20) 1
M| L +
Z3 — x3(z3) +

Figure 6.1: Schematic of structured data fusion. The vector z;, upper triangular matrix

(1)

Q
"

Q

T

7, and full matrix z3 are transformed into a Toeplitz, orthogonal and nonnegative matrix,
respectively. The resulting factors are then used to jointly factorize two coupled data sets.

Structured data fusion (SDF) [14] is the practice of jointly factorizing one or more coupled
data sets while optionally imposing structure on the factors.

Each data set—stored as a dense, sparse or incomplete tensor, cf. Section 2—in a data
fusion problem can be factorized with a different tensor decomposition. Currently, the user
has the choice of the CPD and BTD models, and with a bit of effort it is easy to add new
models as well.

Structure can be imposed on the factors in a modular way and the user can choose from
a library of predefined structures such as nonnegativity, orthogonality, Hankel, Toeplitz,
Vandermonde, matrix inverse, and many more. See Contents.m for a complete list. By
selecting the right structures you can even compute classical matrix decompositions such as
the QR factorization, eigenvalue decomposition and singular value decomposition.
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6 STRUCTURED DATA FUSION

6.1 Domain specific language for SDF

Tensorlab uses a domain specific language (DSL) for modelling structured data fusion
problems. The three key ingredients of an SDF model are (1) defining variables, (2) defining
factors as transformed variables and (3) defining the data sets and which factors to use in
their factorizations (cf. Figure 6.1).

Example 1: nonnegative symmetric CPD. The DSL is best explained by example. To
start, we'll compute the nonnegative symmetric CPD of an incomplete tensor T. First,
generate the tensor:

% Generate a nonnegative symmetric CPD.
= 15;

= 4;

rand(I,R);

{U,U,U};

cpdgen(U);

- C C U H
1 1

32

Remove 10% of its entries.
T(randperm(numel (T),round(@.1*numel(T)))) = NaN;

% Format as incomplete tensor.
T = fmt(T);

Next, create a structure model which defines the variables of the SDF problem. In this case,
there is only one variable and its size is equal to that of the factor U. The 'variables' field
defines the parameters which are optimized, and is also used as initialization for the SDF
algorithm.

% Define model variables.
model.variables.u = randn(I,R);

Here, the variable u is defined as a MATLAB array. It is also perfectly valid to define
variables as (nested) cell arrays of arrays, if desired. Now we need to define the factors.
There is only one factor in this CPD, which we will define as a transformation of the variable
u. More specifically, we will require the factor to be nonnegative:

% Define model factors as transformed variables.
model.factors.U = {'u',@struct_nonneg}; % Create U as struct_nonneg(u).

The factor U is built taking the variable u, and applying the transformation @struct_nonneg.
In fact, factors can be built with a much more complex structure using subfactors, see the
following examples for details. Finally, we define the data set to be factorized and which
factors to use:

% Define model factorizations.
model.factorizations.myfac.data = T;
model . factorizations.myfac.cpd = {'U",'U"','U"};

Each factorization in the SDF problem should be given a new name. In this case there is
only one factorization 'myfac' and it contains two fields. The first is 'data' and contains
the tensor to be factorized. The second should be either 'cpd' or 'btd', depending on
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6 STRUCTURED DATA FUSION

which model to use, and should define the factors to be used in the decomposition.

Note that it is not necessary to use fields to describe the names of the variables and factors.
Instead, one may also create cell arrays of variables and factors and use indices to refer to
them. In this format, the model would be written as

% Equivalent SDF model without using names for variables and factors.
model.variables = { randn(I,R) };

model . factors = { {1,@struct_nonneg} };
model.factorizations.myfac.data = T;

model . factorizations.myfac.cpd = {1,1,13};

The model can now be solved with one of the two families of algorithms for SDF problems:
sdf_minf and sdf_nls. In the case of many missing entries, the sdf_minf family is likely to
perform best. Their first output contains the optimized variables and factors in the fields
'variables' and 'factors', respectively:

% Solve the SDF problem.

options.Display = 5; % View convergence progress every 5 iterations.
sol = sdf_nls(model,options);

sol.variables

sol. factors

Example 2: structured coupled matrix factorization. Let X and Y be square matrices
of order N that we wish to jointly factorize as U - Ax - V7 and U- Ay - W7, respectively.
The factor U is common to both X and Y, and the extent to which the columns are shared
is given by the absolute values of the diagonal matrices Ax and Ay. Furthermore, we will
require the elements of W to lie in the interval (-3,5) and impose a Vandermonde structure
on V, so that

0 1 d
i v V1
v=|: 5

0 1 d

Vv Vi Vn

for some positive integer d. Notice that V depends only on a so-called generator vector

i
v=lu ]

First, we'll create the matrices X and Y

% Generate structured coupled matrices X and Y.

= 10;

4;

randn(N,R);

bsxfun(@power,randn(N,1),0:R-1); % Vandermonde factor.
rand(N,R)*(5+3)-3; % Elements in (-3,5).

lambdaX = @:3; % X does not share first column of U.
lambdaY = 3:-1:0; % Y does not share last column of U.

X = Uxdiag(lambdaX)*V."';

Y = Uxdiag(lambdaY)=*W."';

=< C T =
1
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Then, we define a structure containing the model's variables

% Define model variables.
model.variables.u = randn(N,R);
model.variables.v = randn(N,1);
model.variables.w = randn(N,R);
model.variables.lambdaX = randn(1,R);
model.variables.lambdaY = randn(1,R);

Here, the variables are the matrices U and W, the generator vector v for the Vandermonde
matrix V' and the diagonals Ax and Ay. The model assumes that X and Y share at most
R = 4 vectors in U. Next, we define the factors as transformed variables with

% Define the structure for V by creating an anonymous function which stores deg.
deg = [0 R-11;
vanderm = @(z,task)struct_vander(z,task,deg);

% Define the structure for W by creating an anonymous function which stores rng.
rng = [-3 51;
sigmoid = @(z,task)struct_sigmoid(z,task,rng);

% Define model factors as transformed variables.

model . factors.U = 'u';

model.factors.V = {'v',vanderm}; % Create V as vanderm(v).
model.factors.W = {'w',sigmoid}; % Create W as sigmoid(w).
model . factors.LX = 'lambdaX';

model.factors.LY = 'lambdaY';

In this example the transformations depend on parameters. To pass along these parameters,
we encapsulate them inside anonymous functions. For example, the sigmoid transformation
struct_sigmoid requires the interval rng to constrain its argument in.

Now we add the two factorizations of X and Y to the model with

% Define the joint factorization of the matrices X and Y.
model.factorizations.xfac.data = X;

model . factorizations.xfac.cpd = {'U','V','LX"};
model.factorizations.yfac.data = Y;

model . factorizations.yfac.cpd = {'U','W',"LY'};

Here, we use the CPD to describe the factorizations X = U-Ax-V7 andY = U-Ay -WT by
associating the factor matrices Ax and Ay with the third dimension of X and Y. Alternatively,
we could describe the two factorizations with the BTD model by imposing the core tensor
to be a diagonal matrix with struct_diag, but this is less efficient than using the CPD
model.

The SDF problem can now be solved with

% Solve the SDF problem.

options.Display = 5; % View convergence progress every 5 iterations.
options.TolFun = 1e-9; % Stop earlier.

sol = sdf_nls(model,options);

sol.variables, sol.factors
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Although the algorithm converges to a solution, it usually does not converge to the solution
we used to generate the problem. This indicates that there are not enough constraints to
make the solution to this SDF problem unique (in contrary to the first example).

Example 3: an orthogonal factor. \We show how to compute a simple CPD in which one of
the factors is constrained to have orthonormal colums. To this end, we will create a variable
g that parameterizes a matrix with orthonormal columns Q. The structure struct_orth can
then be used to transform the variable g into the factor Q (cf. Figure 6.1). First, we set
up the problem:

B

Generate CPD, wherein one factor has orthonormal columns.

I =15;
R = 4;
U = cpd_rnd([I I I1,R);

U{1} = orth(U{1}); % Enforce orthonormal columns.
T = cpdgen(U);

The help information provided by struct_orth tells us that the variable g should be a vector
of length /R — 0.5R(R — 1). To transform g into a matrix with orthonormal columns,
we need to pass the size of @ to struct_orth. One way to do this is with an anonymous
function, as shown below. Now we are ready to define and solve the SDF problem:

% Define model variables.

model.variables.q = randn(I*R-0.5*Rx(R-1),1);
randn(I,R);

randn(I,R);

model.variables.b

model.variables.c

% Define a function which will transform g into Q.
% This anonymous function stores the size of Q as its last argument.
orthq = @(z,task)struct_orth(z,task,[I R]);

% Define model factors.
model.factors.Q = {'q',orthq}; % Create Q as orthq(q).
model . factors.B = 'b';

c

model . factors.C

% Define model factorizations.
model . factorizations.myfac.data = T;
model . factorizations.myfac.cpd = {'Q"','B','C'};

% Solve the SDF problem.
options.Display = 5; % View convergence progress every 5 iterations.
sol = sdf_nls(model,options);

% Check that Q indeed has orthonormal columns
sol.factors.Q'*sol.factors.Q

Example 4: rank-(L,, L,, 1) BTD. This example shows how to use the BTD model and
how to use subfactors to build more complex factors in SDF models. We want to compute
arank-(L,, L., 1) BTD [3,4,13] of a tensor T in two terms, i.e.,

T~ (A1-B1T)ocl + (A2-B2")oc2
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where c1 and c2 are vectors and size(A1,2) equals size(B1,2) equals L1 and analogously
for L.

Example 4a: modelling a rank-(L,,L,,1) BTD with a BTD. We could compute this
decomposition by formulating it as a more general BTD

T~ (A1-ST-B1")ocl +(A2-5S2-B27) 0c2 =151+, Al 3 BT o3 C1 4 S2+; A2 +5 B2 o3 C2
where we have introduced the core tensors S1 and S2. First we create the tensor T with

% Generate rank-(Lr,Lr,1) BTD.
size_tens = [10 10 101;
L1 = 2;

U = btd_rnd(size_tens,{[L1 LT 1],[L2 L2 1]1});
T = btdgen(U);

then we define the model as

% Define rank-(Lr,Lr,1) BTD model using the BTD.
model.variables.A1 = randn(size_tens(1),L1);

model.variables.B1 = randn(size_tens(2),L1);
model.variables.c1 = randn(size_tens(3),1);
model.variables.S1 = randn(L1,L1,1);

model.variables.A2 = randn(size_tens(1),L2);
model.variables.B2 = randn(size_tens(2),L2);
model.variables.c2 = randn(size_tens(3),1);
model.variables.S2 = randn(L2,L2,1);

model.factors = { "A1','B1',"'cl1',"'S1", "A2','B2','c2','S2" };
model . factorizations.mybtd.data = T;

model . factorizations.mybtd.btd = {{1,2,3,4},{5,6,7,8}};

where, for the sake of brevity, we have used the index-notation for the 'factors' field.
Notice that the BTD is specified in the same format as for other BTD algorithms, except
in place of factor matrices and core tensors, there are references to factors. The BTD can
then be computed by

% Solve the SDF problem.

options.Display = 5; % View convergence progress every 5 iterations.
sol = sdf_nls(model,options);

sol.variables

sol.factors

Example 4b: modelling a rank-(L,, L,,1) BTD with a CPD. A different and more efficient
approach to compute the rank-(L,, L,, 1) BTD would be to cast it as a CPD as in

L1 L2
T~ (A1-B1")ocl 4 (A2-B2")oc2 =) Al 0Bl jocl+ » A2;0B2;0c2.
Jj=1 Jj=1
Here, the CPD’s third factor matrix looks like [repmat(c1,1,L1) repmat(c2,1,L2)], while
the first two would be [A1 A2] and [B1 B2], respectively. These factor matrices are all built
out of subfactor matrices, which we can implement in the DSL as follows:
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% Define rank-(Lr,Lr,1) BTD model using the CPD.

model.variables.
model.variables.
model.variables.
model.variables.
model.variables.
model.variables.

Al
B1
cl
A2
B2
c2

= randn(size_tens(1),L1);
= randn(size_tens(2),L1);
= randn(size_tens(3),1);
= randn(size_tens(1),L2);
= randn(size_tens(2),L2);
= randn(size_tens(3),1);

% The factors A, B and C are built out of subfactors.

% Structure may also be imposed on subfactors if desired.

model.factors.A = { {'A1'},{'A2"'} };
model.factors.B = { {'B1'},{'B2'} };
model.factors.C = { {'c1'},{'cl1'},{'c2"},{'c2'} };
model . factorizations.mybtd.data = T;

model . factorizations.mybtd.cpd = {'A",'B",'C"};

Let's deconstruct the meaning of this syntax: model.factors.A = { {'A1'},{'A2'} } says

that the factor A is a matrix consisting of two subfactors placed horizontally next to each

other. Subfactors may also be placed vertically by using a semicolon ; instead of a comma
, to separate them. The SDF algorithm will first build the subfactors, which are in this
case simply references to the variables A1 and A2, and then call cell2mat on the cell array of

subfactors to create the factor A. Like factors, structure may also be imposed on subfactors.

For instance, we could have written model.factors.A = { {'A1',@struct_sigmoid},{'A2'} }

to constrain the elements of the first submatrix in the factor A to the interval (—1,1) (the

elements of the variable A1 itself are not restricted to this interval however).

Because computing the rank-(L,, L,, 1) BTD is a relatively common task, we show a final

compact and efficient way to do so using the predefined structure struct_LL1:

% Define rank-(Lr,Lr,1) BTD model using the CPD (more efficient).

L = [L1 L23;

LL1 = @(z,task)struct_LL1(z,task,L);

model.variables.
model.variables.
model.variables.
model . factors.A
model . factors.B
model . factors.C

A
B
G

= randn(size_tens(1),L1+L2);
= randn(size_tens(2),L1+L2);
= randn(size_tens(3),2);
AT

"B

{'c',LL1};

model . factorizations.mybtd.data = T;
model . factorizations.mybtd.cpd = {'A"','B",'C"};

Example 5: constants. \When a factor or subfactor is intended to be constant, then instead

of referring to a variable by its name or index, use the constant array itself.

Example 5a: known factor matrix. The following example computes a CPD in which one

factor matrix is known:

% Generate a CPD.

= 15;
:4;

— C U H
1

= cpdgen(U);

cpd_rnd([I I I1,R);
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% Model the CPD of T, where the second half of U{3} is known.

model.variables.a = randn(size(U{13}));
model.variables.b = randn(size(U{13}));
model.variables.c = randn(size(U{1},1),2);

model.factors.A = 'a';

b

model . factors.C = U{3}; % The third factor is constant.
model.factorizations.myfac.data = T;

model . factors.B

model . factorizations.myfac.cpd = {'A"','B','C'};

% Solve the SDF model.

options.Display = 5; % View convergence progress every 5 iterations.
sol = sdf_nls(model,options);

sol.variables

sol.factors

Example 5b: partially known factor matrix. To create a factor of which some of the columns
are known, simply define the factor to consist of a number of subfactors where one of the
subfactors is a numeric array. The following example computes a CPD in which part of one
factor matrix is known:

% Generate a CPD.

= 15;

= 4;

cpd_rnd([I I I],R);
cpdgen(U);

- C U H
1

% Model the CPD of T, where the second half of U{3} is known.

model.variables.a = randn(size(U{13}));
model.variables.b = randn(size(U{1}));
model.variables.c = randn(size(U{1},1),2);

a;

model . factors.A
model . factors.B = 'b';

{'c',U{3}(:,1:2)}; % The third factor is partially known.
model . factorizations.myfac.data = T;

model . factors.C
model . factorizations.myfac.cpd = {'A"','B','C'};

% Solve the SDF model.

options.Display = 5; % View convergence progress every 5 iterations.
sol = sdf_nls(model,options);

sol.variables

sol.factors

Example 6: chaining factor structures. Factor structures can be chained so that a variable
is transformed by a sequence of functions. In the following example, we compute a CPD in
which a subfactor of the first factor matrix is a nonnegative Toeplitz matrix and the last
factor is known. To create a nonnegative Toeplitz subfactor, we will create a generator
vector for the Toeplitz matrix, transform it with struct_nonneg so that it is nonnegative,
and then transform it with struct_toeplitz to create a nonnegative Toeplitz subfactor. The
factor A is defined as a matrix consisting of two subfactors: the top subfactor transforms the
variable atop with struct_nonneg, followed by struct_toeplitz, and the bottom subfactor is
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simply abtm.

% Generate CPD, wherein
% - the first factor has a nonnegative Toeplitz subfactor.
% - the last factor is known.

I =15;
R = 4;
U= cpd_rnd([I I I]1,R);

U{13}(1:R,1:R) = toeplitz(rand(4,1));
T = cpdgen(U);

% Define model variables.
model.variables.atop = randn(2*R-1,1);
model.variables.abtm = randn(I-R,R);
model.variables.b = randn(I,R);

% Define model factors.

% The first factor vertically concatenates two subfactors.

% The top subfactor is generated as a nonnegative Toeplitz matrix,

% i.e., A = [ struct_toeplitz(struct_nonneg(atop)) ; abtm J.

model.factors.A = {{'atop',@struct_nonneg,@struct_toeplitz};
{'abtm'3}3};

model.factors.B = 'b';

% Third factor matrix is known.

model . factors.C = U{3};

% Define model factorizations.
model . factorizations.myfac.data = T;
model . factorizations.myfac.cpd = {'A"','B','C'};

% Solve the SDF problem.
options.Display = 5; % View convergence progress every 5 iterations.
sol = sdf_nls(model,options);

Example 7: regularization. Next to the CPD and BTD models, SDF also includes two mod-
els which represent L1- and L2-regularization terms. By including the factorizations

% Use L2-regularization on the factors A and B.
model . factorizations.myreg2.data = {zeros(size(U{1})),zeros(size(U{2}))};
model.factorizations.myreg2.regl2 = {'A','B'};

% Use Ll1-regularization on C-ones(size(C)).
model . factorizations.myregl.data = ones(size(U{3}));

model.factorizations.myregl.regl1 = {'C'};

.
to the previous example, the terms || [vec(A)T vec(B)T] —0||3 and 3| vec(C) — 1|1 are
added to the objective function. The data field defaults to all zeros, if omitted.
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6.2 Implementing a new factor structure

Function signature To add your own structure to impose on factors in an SDF model,
create a function with the following function signature

function [x,state] = struct_mystruct(z,task)
end

Function evaluation This function will be called in three different ways by SDF algorithms.
The first is simply evaluating the structure, given the variable z:

[x,state] = struct_mystruct(z)

From here on, we will assume the transformation maps z to x = sqrt(z). Thus, an early
implementation could look like

function [x,state] = struct_mystruct(z,task)
if nargin < 2 || isempty(task), x = sqrt(z); state = []; end
end

Right Jacobian-vector product Once the function has been evaluated at a certain z, it
will be called several times to evaluate the Jacobian-vector product

dvec(vz) ,

dvec(z)T

at z, given a vector r stored in task.r. The latter will not actually be stored as a vector,
but rather in the same format as the input variable z, be it an array or (nested) cell array
of arrays. Likewise, the result of the right Jacobian-vector product x should be in the same
format as the output of the evaluation struct_mystruct(z). Moreover, the second output
state from the function evaluation stage can be used to store computations in, which will
then be made available as fields in task. Taking this into account, our transformation could
look like

function [x,state] = struct_mystruct(z,task)
if nargin < 2 || isempty(task)
X = sqrt(z);
state.dz = 1./(2*x);
elseif ~isempty(task.r)
% Here, task.dz is equal to 1/(2*sqrt(z)), which we stored earlier.
x = task.dz.xtask.r;
state = [1;
end
end

Left Jacobian-vector product Finally, the function will also be called to evaluate the left
Jacobian-vector product

(8vec(ﬁ)>H . <8vec(ﬁ)>H y

dvec(z)T dvec(zZ)T
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where the partial derivative with respect to z (Z) treats Z (z) as constant (cf. Section 7.1)
and the vector £ is stored in task.1l. The output x should be of the same format as the
input z. Here, the second term in the left Jacobian-vector product is zero, and the full
implementation of the structure becomes

function [x,state] = struct_mystruct(z,task)
if nargin < 2 || isempty(task)
X = sqrt(z);
state.dz = 1./(2*x);
elseif ~isempty(task.r)
x = task.dz.*task.r;
state = [1;
elseif ~isempty(task.l)
x = conj(task.dz).*xtask.1;
state = [];
end
end

Remark Note that currently the sdf_nls family of algorithms does not accept nonana-
lytic structures, i.e., structures for which the second term in the left Jacobian-vector
product is nonzero. The sdf_minf family does support nonanalytic structures, however.
For example, sdf_nls currently does not support a structure of the form z % z, but does
support the structure z x z. Since sdf_minf does not use the right Jacobian-vector prod-
uct, a partial workaround is to implement the structure z* z for the right Jacobian-vector
product so that sdf_nls can still use this structure if z is real-valued. At the same time,
the left Jacobian-vector product can be based on the original structure z * Z so that
sdf_minf can be used for both real and complex z.

7 Complex optimization

Optimization problems An integral part of Tensorlab comprises optimization of real
functions in complex variables [12]. Tensorlab offers algorithms for complex optimization
that solve unconstrained nonlinear optimization problems of the form

miznei%ize f(z,2), (minf)
where f : C" — R is a smooth function (cf. minf_lbfgs, minf_lbfgsdl, minf_ncg and
minf_sricgs) and nonlinear least squares problems of the form

N 1 —\112

minimize §||}"(z,z)HF, (nls)

where || - || is the Frobenius norm and F : C” — C**/v is a smooth function that maps
n complex variables to []/, complex residuals (cf. nls_gndl, nls_gncgs and nls_1lm). For
nonlinear least squares problems, simple bound constraints of the form

1
minimize = F(z,2)[[7

subject to Re{l} < Re{z} < Re{u} (nisb)
Im{l} <Im{z} < Im{u}
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are also supported (cf. nlsb_gndl). Furthermore, when a real solution z € R" is sought,
complex optimization reduces to real optimization and the algorithms are computationally
equivalent to their real counterparts.

Prototypical example Throughout this section, we will use the Lyapunov equation
A-X+X-A"+Q=0,

which has important applications in control theory and model order reduction, as a prototyp-
ical example. In this matrix equation, the matrices A, Q € C™" are given and the objective
is to compute the matrix X € C™". Since the equation is linear in X, there exist direct
methods to compute X. However, these are relatively expensive, requiring O(n°) floating
point operations (flop) to compute the solution. Instead, we will focus on a nonlinear
extension of this equation to low-rank solutions X, which enables us to solve large-scale
Lyapunov equations.

From here on, X is represented as the matrix product U -V, where U € C"™<k, \/ € Ck*n
(k < n). In the framework of (minf) and (nls), we define the objective function and residual
function as

(U V) = 5 | Fuap(U V)2 (Fvap)
and
Fuap(U V) :=A-(U-V)+(U-V) A" +Q, (F-lyap)
respectively.

Remark Please note that this example serves mainly as an illustration and that com-
puting a good low-rank solution to a Lyapunov equation proves to be quite difficult in
practice due to an increasingly large amount of local minima as k increases.

7.1 Complex derivatives

7.1.1 Pen & paper differentiation

Scalar functions To solve optimization problems of the form (minf), many algorithms

require first-order derivatives of the real-valued objective function f. For a function of real

variables fgr : R — R, these derivatives can be captured in the gradient %—ff. For example,

let
fr(x) :==sin(x"x + 2x'a)

for a, x € R", then its gradient is given by

dfy
d—j = cos(x"x +2x"a) - (2x + 2a).

Things get more interesting for real-valued functions of complex variables. Let

f(z) :=sin(z'z+(z+2)"a),
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where z € C" and an overline denotes the complex conjugate of its argument. It is clear
that f(x) = fr(x) for x € R” and hence f is a generalization of fg to the complex plane.

Because f is now a function of both z and Z, the limit limp_g w

no longer exists
in general and so it would seem a complex gradient does not exist either. In fact, this only
tells us the function f is not analytic in z, i.e., its Taylor series in z alone does not exist.

However, it can be shown that f is analytic in z and Z as a whole, meaning f has a Taylor

gt
series in the variables z¢ := [zT ?T} with a complex gradient

of
df  |oz
dzc | of |

oz

where % and % are the cogradient and conjugate cogradient, respectively. The (conjugate)

cogradient is a Wirtinger derivative and is to be interpreted as a partial derivative of f
with respect to the variables z (Z), while treating the variables Z (z) as constant. For the
example above, we have

f_ cos(z'z+(z+2z)"a)- (z+a)

8z
or =T = T
5 =cos(Z'z+(Z+2z)'a) - (z+ a).
First, we notice that g = %, which holds for any real-valued function f(z,Z). A conse-

quence is that any algorithm that optimizes f will only need one of the two cogradients,
since the other is just its complex conjugate. Second, we notice that the cogradients
evaluated in real variables z € R” are equal to the real gradient % up to a factor 2. Taking
these two observations into account, the unconstrained nonlinear optimization algorithms
in Tensorlab require only the scaled conjugate cogradient
of of

g(z) = 25 = 25

and can optimize f over both z € C” and z € R".

Vector-valued functions To solve optimization problems of the form (nls), first-order
derivatives of the vector-valued, or more generally tensor-valued, residual function F are
often required. For a tensor-valued function F : R” — R/1*"*In these derivatives can be

captured in the Jacobian 6"%@. For example, let

sin(x"x) x'h
x'a  cos(x"x)
for a, b, x € R", then its Jacobian is given by
cos(x"x) - (2xT)
dvec(Fr) al
dxT b"
—sin(x"x) - (2xT)

But what happens when we allow F : C" — C'***/n? For example,

sin(z'z) z'h ]

Fla) = Z'a cos(z'z)
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where z € C" could be a generalization of Fg to the complex plane. Following a similar

reasoning as for scalar functions f, we can define a Jacobian and conjugate Jacobian as
dvec(F) and dvec(F)

, respectively. For the example above, we have

9z 8z'
cos(z'z) - (2z") or
dvec(F) or and dvec(F) al
9z7 b" oz or
—sin(z'z)-z" —sin(z'z) - z"

Because F maps to the complex numbers, it is no longer true that the conjugate Jacobian
is the complex conjugate of the Jacobian. In general, algorithms that solve (nls) require

both the Jacobian and conjugate Jacobian. In some cases only one of the two Jacobians
dvec(F)
oz"

= 0. Tensorlab offers
nonlinear least squares solvers for both the general nonanalytic case and the latter analytic

is required, e.g., when F is analytic in z, which implies

case.

7.1.2 Numerical differentiation

Real scalar functions (with the j-trick) The real gradient can be numerically approx-
imated with deriv using the so-called j-trick [16]. For example, define the scalar func-
tions

10—20

) = T 1o

f>(x) = sin(x"a)? f3(X,Y) := arctan(trace(XT - Y)),

where x € R, a,x € R" and X,Y € R™". Their first-order derivatives are

ofs 1 v
df, 1017 df o X~ TraceXTVE
O TN axConaiesaaa o 1

3y = Trmcexye X

An advantage of using the j-trick is that it can compute first-order derivatives accurately up
to the order of machine precision. The disadvantages are that this requires an equivalent
of about 4 (real) function evaluations per variable (compared to 2 for finite differences)
and that certain requirements must be met. First, only the real gradient can be computed,
meaning the gradient can only be computed where the variables are real. Second, the
function must be real-valued when evaluated in real variables. Third, the function must
be analytic on the complex plane. In other words, the function may not be a function of
the complex conjugate of its argument. For example, the /-trick can be used to compute
the gradient of the function @(x)x.'*x, but not of the function @(x)x'*x because the latter
depends on X. As a last example, note that @(x)real(x) is not analytic in x € C because it
can be written as @(x) (x+conj(x))/2.

Choosing a as ones(size(x)) in the example functions above, the following example uses
deriv to compute the real gradient of these functions using the i-trick:

% Three test functions.

f1 = @(x)1e-20/(1-1e3*x);

f2 = @(x)sin(x. '*ones(size(x)))"3;
3 = @(XY)atan(trace(XY{1}.'*XY{2}));
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% Their first-order derivatives.

gl = @(x)1e-17/(1-1e3*x)"2;
g2 = @(x)3*sin(x.'*ones(size(x)))"2xcos(x. " '*ones(size(x)))*ones(size(x));
g3 = @(XY){1/(1+trace(XY{1}. '*XY{2})"2)*XY{2},

1/(1+trace (XY{1}. '*XY{2}) *2)*XY{1}};

% Approximate the real gradient with the i-trick and compute its relative error.
X = randn;

relerr1 = abs(gl(x)-deriv(f1,x))/abs(gl(x))

x = randn(10,1);

relerr2 = norm(g2(x)-deriv(f2,x))/norm(g2(x))

XY = {randn(10),randn(10)};

relerr3 = cellfun(@(a,b)frob(a-b)/frob(a),g3(XY),deriv(f3,XY))

In Tensorlab, derivatives of scalar functions are returned in the same format as the function’s
argument. Notice that f3 is function of a cell array XY, containing the matrix X in XY{1} and
the matrix Y in XY{2}. In similar vein, the output of deriv(f3,XY) is a cell array containing
the matrices % and %. Often, this allows the user to conveniently write functions as
a function of a cell array of variables (containing vectors, matrices or tensors) instead of
coercing all variables into one long vector which must then be disassembled in the respective

variables.

Scalar functions (with finite differences) If the conditions for the j-trick are not satisfied,
or if a scaled conjugate cogradient is required, an alternative is using finite differences to
approximate first-order derivatives. In both cases, the finite difference approximation can
be computed using deriv(f,x,[], 'gradient'). As a first example, we compute the relative
error of the finite difference approximation of the real gradient of f, £, and fs:

% Approximate the real gradient with finite differences and compute its relative
error.

X = randn;

relerrl = abs(gl(x)-deriv(f1,x,[], 'gradient'))/abs(gl1(x))

X = randn(10,1);

relerr2 = norm(g2(x)-deriv(f2,x,[], 'gradient'))/norm(g2(x))

XY = {randn(10),randn(10)};

relerr3 = cellfun(@(a,b)frob(a-b)/frob(a),g3(XY),deriv(f3,XY,[], 'gradient'))

If f(z) is a real-valued scalar function of complex variables, deriv can compute its scaled
conjugate cogradient g(z). For example, let

f(z):=a'(z+7Z) +log(z"2) g(z) =2—== i:2~3+E - Z,

where a € R"” and z € C”. Since f is real-valued and z is complex, calling deriv(f,z)
is equivalent to deriv(f,z,[1, 'gradient') and uses finite differences to approximate the
scaled conjugate cogradient. In the following example a is chosen as ones(size(z)) and the
relative error of the finite difference approximation of the scaled conjugate cogradient g(z)
is computed:
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32

Approximate the scaled conjugate cogradient with finite differences

N

and compute its relative error.

f = @(z)ones(size(z)).'*(z+tconj(z))+log(z'*z);
g = @(z)2*ones(size(z))+2/(z'*z)*z;
z = randn(10,1)+randn(10,1)*11;

relerr = norm(g(z)-deriv(f,z))/norm(g(z))

Remark In case of doubt, use deriv(f,z,[], 'gradient') to compute the scaled con-
jugate cogradient. Running deriv(f,z) will attempt to use the /-trick when z is real,
which can be substantially more accurate, but should only be applied when f is analytic.

Real vector-valued functions (with the j-trick) Analogously to scalar functions, the
real Jacobian of tensor-valued functions can also be numerically approximated with deriv
using the j-trick. Take for example the following matrix-valued function

-
Filx) = [logsfrx)() sin(?ﬁx)] '
where a, x € R”, and its real Jacobian
- 'TXT
S (x) = dv%(f:l) =2 aO

cos(xTx) - xT

Set a equal to ones(size(x)). Since each entry in Fi(x) is real-valued and not a function
of X, we can approximate the real Jacobian J;(x) with the j-trick:

% Approximate the Jacobian of a tensor-valued function with the i-trick

% and compute its relative error.

F1 = @(x)[log(x.'*x) @; 2*ones(size(x)).'*x sin(x.'*x)];

J1 = @(x)2*[1/(x."*x)*x."'; ones(size(x)).'; zeros(size(x))."'; cos(x.'*x)*x."'];
x = randn(10,1);

relerr1 = frob(J1(x)-deriv(F1,x))/frob(J1(x))

Analytic vector-valued functions (with finite differences) The Jacobian of an ana-
lytic tensor-valued function F(z) can be approximated with finite differences by calling
deriv(F,z,[1, 'Jacobian'). Functions that are analytic when their argument is real, may no
longer be analytic when their argument is complex. For example, F(z) := |z"z Re{z}Tz}
is not analytic in z € C" because it depends on Z, but is analytic when z € R”. An example
of a function that is analytic for both real and complex z is the function Fi(z). The
following two examples compute the relative error of the finite differences approximation of
the Jacobian Ji(x) in a real vector x:

% Approximate the Jacobian of an analytic tensor-valued function
% with finite differences and compute its relative error.

X = randn(10,1);

relerr1 = frob(J1(x)-deriv(F1,x,[], 'Jacobian'))/frob(J1(x))
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and the relative error of the finite differences approximation of J;(z) in a complex vector
z:

% Approximate the Jacobian of an analytic tensor-valued function
% with finite differences and compute its relative error.

z = randn(10,1)+randn(10,1)*11i;

relerr1 = frob(J1(z)-deriv(F1,z,[], 'Jacobian'))/frob(J1(z))

Nonanalytic vector-valued functions (with finite differences) In general, a tensor-
valued function may be function of its argument and its complex conjugate. The matrix-

valued function

log(trace(X" - Y)) 0

F2(X.Y) = al(X+X)a a'(y —=Yal'

where a € R” and X,Y € C™" is an example of such a nonanalytic function because it
depends on X, Y and X, Y. Its Jacobian and conjugate Jacobian are given by

[ 0 trace(lXH-Y) -VeC(Y)T
-
HX.Y) = dvec(Fs) (a®a) 0
5, [vec(X)T vec(Y)T] 0 0
|0 (awa)’
_trace(lXH-Y) 'VeC(Y)T 0
-
XY = @/ec(}}) _ (a®a) 0
3] [vec(X)T vec(Y)T] 0 0
0 —(a@a)’

respectively. For a nonanalytic tensor-valued function F(z), deriv(F,z,[],'Jacobian-C")
computes a finite differences approximation of the complex Jacobian

{6vec(]—') 5, vec(]—')}
oz oz |

comprising both the Jacobian and conjugate Jacobian. The complex Jacobian of F»(X,Y) is
the matrix [JQ(X, Y) JS(X, Y)} In the following example a is equal to ones(length(z{1}))
and the relative error of the complex Jacobian’s finite differences approximation is com-
puted:

% Approximate the complex Jacobian of a nonanalytic tensor-valued function
% with finite differences and compute its relative error.

F2 = @(z)[log(trace(z{1}'*z{2})) 0; ...
sum(sum(z{13}+conj(z{13}))) sum(sum(z{2}-conj(z{2})))1;
J2 = @(z)[zeros(1,numel(z{1})) 1/trace(z{1}'*z{2})*reshape(conj(z{1}),1,[1) ...

1/trace(z{1}'*xz{2})*reshape(z{2},1,[1) zeros(1,numel(z{2})); ...
ones(1,numel(z{1})) zeros(1,numel(z{1})) ...
ones(1,numel (z{2})) zeros(1,numel(z{2})); ...
zeros(1,2xnumel (z{1})) zeros(1,2*numel(z{2})); ...
zeros(1,numel(z{1})) ones(1,numel(z{1})) ...
zeros(1,numel(z{1})) -ones(1,numel(z{1}))1];

z = {randn(10)+randn(10@)*1i,randn(10)+randn(10)*1i};

relerr2 = frob(J2(z)-deriv(F2,z,[], 'Jacobian-C"'))/frob(J2(z))
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7.2 Nonlinear least squares

Algorithms Tensorlab offers three algorithms for unconstrained nonlinear least squares:
nls_gndl, nls_gncgs and nls_Im. The first is Gauss—Newton with a dogleg trust region
strategy, the second is Gauss—Newton with CG-Steihaug for solving the trust region
subproblem and the last is Levenberg—Marquardt. A bound-constrained method, nlsb_gndl,
is also included and is a projected Gauss—Newton method with dogleg trust region. All
algorithms are applicable to both analytic and nonanalytic residual functions and offer
various ways of exploiting the structure available in its (complex) Jacobian.

With numerical differentiation The complex optimization algorithms that solve (nls)
require the Jacobian of the residual function F(z,Z), which will be Fiyap(U, V) for the
remainder of this section (cf. Section 7). The second argument dF of the nonlinear least
squares optimization algorithms nls_gndl, nls_gncgs and nls_Im specifies how the Jacobian
should be computed. To approximate the Jacobian with finite differences, set dF equal to
'Jacobian' or 'Jacobian-C'

6“;;@ , assuming F

is analytic in z. The second case, 'Jacobian-C', corresponds to approximating the complex

dvec(F) dvec(F) n
ian =5 T where z € C".
Since Fiyap does not depend on U or V, we may implement a nonlinear least squares solver

The first case, 'Jacobian', corresponds to approximating the Jacobian

Jacobian consisting of the Jacobian and conjugate Jacobian

for the low-rank solution of the Lyapunov equation as

function z = lyap_nls_deriv(A,Q,z0)

F = @(z) (Axz{1 ) *z{2}+z{1}*(z{2}*A")+Q;
z = nls_gndl(F, 'Jacobian',z0);
end

The residual function F(z) is matrix-valued and its argument is a cell array z, consisting of
the two matrices U and V. The output of the optimization algorithm, in this case nls_gndl,
is a cell array of the same format as the argument of the residual function F(z).

With the Jacobian Using the property vec(A- X - B) = (BT ® A) - vec(X), it is easy to
verify that the Jacobian of Fiap(U, V) is given by
O vec(Fiyap)
8 |vec(U)T vec(V)T}

- {(VT®A)+(Z.VT®H) I0A -U)+ (A U)}. (J-lyap)

To supply the Jacobian to the optimization algorithm, set the field dF.dz as the function
handle of the function that computes the Jacobian at a given point z. For problems for
which the residual function F depends on both z and Z, the complex Jacobian can be
supplied with the field dF.dzc. See Section 7.1 or the help page of the selected algorithm
for more information. Applied to the Lyapunov equation, we have

function z = lyap_nls_J(A,Q,z0)

dF.dz = @J;
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z = nls_gndl(@F,dF,z0);

function F = F(z)

U= z{1}; V = z{23};

F = (AxU)*V+Ux(VxA')+Q;
end

function J = J(z)

U=2z{1}; V= 2z{2}; I = eye(size(A));

J = [kron(V."',A)+kron(conj(A)*V."',I) kron(I,A*xU)+kron(conj(A),U)];
end

end

With the Jacobian’s Gramian When the residual function F : C" — Ch>xIv s
analytic! in z (i.e., it is not a function of Z) and the number of residuals ]/, is large
compared to the number of variables n, it may be beneficial to compute the Jacobian's

Gramian J™J instead of the Jacobian J := av;;@ itself. This way, each iteration of the

nonlinear least squares algorithm no longer requires computing the (pseudo-)inverse Jt, but
rather the less expensive (pseudo-)inverse (JHJ)t. In the case of the Lyapunov equation,
this can lead to a significantly more efficient method if the rank k of the solution is small
with respect to its order n. Along with the Jacobian's Gramian, the objective function
f := 3| F||I# and its gradient % = J" . vec(F) are also necessary. Skipping the derivation
of the gradient and Jacobian’'s Gramian, the implementation could look like

function z = lyap_nls_JHJ(A,Q,z0)

AHA = A'*A;

dF.JHJ = @JHJ;

dF.JHF = @grad;

z = nls_gndl(ef,dF,z0);

function f = f(z)
U= 2z{1}; V = z{23};
F (A*U) *V+Ux (V*A' ) +Q;
f = 0.5%(F(:)'*F(:));

end

function g = grad(z)
U=2z{1}; V = z{2};
gU = AHA*(U* (VAV'))+A' * (Ux (VA" *V'))+A' % (Q*V ')+ ...
Ax (U* (VxA*V ') ) +Ux (VXAHA*V ' ) +Q* (A*V");
gV = (U'*AHAXU)*V+((U'*A"*U)*V)*A'+(U"'*A' )*xQ+ . . .
(U *xAxU) *V)*A+((U'*xU)*V) *AHA+(U ' *Q) *A;
g = {gu,gVv};
end

function JHJ = JHI(z)

1In the more general case of a nonanalytic residual function, the structure in its complex Jacobian can
be exploited by computing an inexact step. See the following paragraph for more details.
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U= 2z{1}; V= 2z{2}; I = eye(size(A));
tmpa = kron(conj(V*A'xV') A); tmpb = kron(conj(A),U'xA"'*U);

JHI11 = kron(conj(V*V'),AHA)+kron(conj(V*AHA*V') I)+tmpa+tmpa’;
JHJ22 = kron(I,U'*AHA*U)+kron(conj(AHA),U"'xU)+tmpb+tmpb";
JHJ12 = kron(conj(V),AHA*U)+kron(conj (V*A) ,A'*U)+ ...

kron(conj(V*A"'),AxU)+kron(conj(V*AHA) ,U);
JHJ = [JHJ11 JHJ12; JHJ12' JHJ22];
end

end

By default, the algorithm nls_gndl uses the Moore—Penrose pseudo-inverse of either J or
JHJ to compute a new descent direction. However, if it is known that these matrices always
have full rank, a more efficient least squares inverse can be computed. To do so, use the
option

% Compute a more efficient least squares step instead of using the pseudoinverse.
options.JHasFullRank = true;
z = nls_gndl(ef,dF,z@,options);

The other nonlinear least squares algorithms nls_gncgs and nls_1m use a different approach
for calculating the descent direction and do not have such an option.

With an inexact step The most computationally intensive part of most nonlinear least
squares problems is computing the next descent direction, which involves inverting either the
Jacobian J := av%gf) or its Gramian J"J in the case of an analytic residual function. With
iterative solvers such as preconditioned conjugate gradient (PCG) and LSQR, the descent
direction can be approximated using only matrix-vector products. The resulting descent
directions are said to be inexact. Many problems exhibit some structure in the Jacobian
which can be exploited in its matrix-vector product, allowing for an efficient computation of
an inexact step. Concretely, the user has the choice of supplying the matrix vector products
J-xand J" .y, or the single matrix-vector product (J"J) - x. An implementation of an

inexact nonlinear least squares solver using the former method can be

function z = lyap_nls_Jx(A,Q,z0)

dF.dzx = @Jx;
z = nls_gndl(@F,dF,z0);

function F = F(z)

U= 2z{1}; V = z{23};

F = (A*U)*V+Ux (V*A')+Q;
end

function b = Jx(z,x,transp)
U=2z{1}; vV = z{2};
switch transp
case 'notransp' % b = Jxx
Xu = reshape(x(1:numel(U)),size(U));
Xv = reshape(x(numel(U)+1:end),size(V));
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b = (AxXu)*V+Xux (VxA')+(AxU) *Xv+Ux (Xv*xA');
b =b(:);
case 'transp' % b = J'*x

X = reshape(x,size(A));
Bu = A'*(X*V')+Xx(A*V');
Bv = (U'*xA")*X+(U'*X)*A;
b = [Bu(:); Bv(:)];
end
end

end

where the Kronecker structure of the Jacobian (J-lyap) is exploited by reducing the computa-
tions to matrix-matrix products. Under suitable conditions on A and @, this implementation
can achieve a complexity of O(nk?), where n is the order of the solution X = U -V and k
is its rank.

In the case of a nonanalytic residual function F(z,Z), computing an inexact step requires
matrix-vector products J-x, J™-y, J.-x and JH.y, where J := "”;%@ and J. 1= av;%@
the residual function’s Jacobian and conjugate Jacobian, respectively. For more information

are

on how to implement these matrix-vector products, read the help information of the desired
(nls) solver.

Setting the options The parameters of the selected optimization algorithm can be set
by supplying the method with an options structure, e.g.,

% Set algorithm tolerances.
options.TolFun = 1e-12;
options.TolX = le-6;
options.MaxIter = 100;

dF.dz = @J;

z = nls_gndl(@F,dF,z@,options);

Remark It is important to note that since the objective function is the square of a
residual norm, the objective function tolerance options.TolFun can be set as small as
10732 for a given machine epsilon of 1071°. See the help information on the selected
algorithm for more details.

Viewing the algorithm output The second output of the optimization algorithms returns
additional information pertaining to the algorithm. For example, the algorithms keep track
of the objective function value in output.fval and also output the circumstances under
which the algorithm terminated in output.info. As an example, the norm of the residual
function of each iterate can be plotted with

% Plot each iterate's objective function value.
dF.dz = @J;

[z,output] = nls_gndl(@F,dF,z0);
semilogy(0@:output.iterations,sqrt(2*output.fval));
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Since the objective function is 3| ||, we plot sqrt(2#output.fval) to see the norm || F||¢.
See the help information on the selected algorithm for more details.

7.3 Unconstrained nonlinear optimization

Algorithms Tensorlab offers three algorithms for unconstrained complex optimization:
minf_lbfgs, minf_lbfgsdl and minf_ncg. The first two are limited-memory BFGS with Moré—
Thuente line search and dogleg trust region, respectively, and the last is nonlinear conjugate
gradient with Moré—Thuente line search. Instead of the supplied Moré=Thuente line search,
the user may optionally supply a custom line search method. See the help information for
details.

With numerical differentiation The complex optimization algorithms that solve (minf)
require the (scaled conjugate co-)gradient of the objective function f(z,Z), which will be
fiyap(z,Z) for the remainder of this section (cf. Section 7). The second argument of the
unconstrained nonlinear minimization algorithms minf_lbfgs, minf_lbfgsdl and minf_ncg
specifies how the gradient should be computed. To approximate the (scaled conjugate
co-)gradient with finite differences, set the second argument equal to the empty matrix [J.
An implementation for the Lyapunov equation could look like

function z = lyap_minf_deriv(A,Q,z0)

f = @(z)frob((A*z{1})*z{2}+z{1}*(z{2}*A')+Q);
z = minf_lbfgs(f,[],z0);

end

As with the nonlinear least squares algorithms, the argument of the objective function
is a cell array z, consisting of the two matrices U and V. Likewise, the output of the
optimization algorithm, in this case minf_lbfgs, is a cell array of the same format as the
argument of the objective function f(z).

With the gradient |If an expression for the (scaled conjugate co-)gradient is available, it
can be supplied to the optimization algorithm in the second argument. For the Lyapunov
equation, the implementation could look like

function z = lyap_minf_grad(A,Q,z0)

AHA = A'%A;
z = minf_lbfgs(@f,@grad, z0);

function f = f(z)
U=z{1}; vV = z{2};
F (AxU) *V+U* (V*A')+Q;
f = 0.5%x(F(:)"*F(:));
end

function g = grad(z)
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U=2z{1}; V = z{2};
gU = AHAx(Ux (VXV'))+A" x(Ux(VFA' %V ))+A' x(Q*V' )+ ...
Ax (Ux (VXAxV ")) +Ux (VXAHA*V ' )+Qx (AxV');
gV = (U'*xAHA*U) *xV+((U'*A'*xU)*V)*A'+(U'*A' )*Q+ . ..
(U *xAxU) *V)*A+((U'*xU)*V) *AHA+(U ' *Q) *A;
g = {gU,gVv};
end

end

The function grad(z) computes the scaled conjugate cogradient 2%, which coincides
with the real gradient for z € R". See Section 7.1 for more information on complex
derivatives.

Remark Note that the gradient grad(z) is returned in the same format as the solution
z, i.e., as a cell array containing matrices of the same size as U and V. However,
the gradient may also be returned as a vector if this is more convenient for the user.
In that case, the scaled conjugate cogradient should be of the format 2% where

z:= [vec(U)T vec(\/)T] "

Setting the options The parameters of the selected optimization algorithm can be set
by supplying the method with an options structure, e.g.,

% Set algorithm tolerances.
options.TolFun = le-6;

options.TolX = 1e-6;

options.MaxIter = 100;

z = minf_lbfgs(@f,@grad,z0,options);

See the help information on the selected algorithm for more details.

Viewing the algorithm output The second output of the optimization algorithms returns
additional information pertaining to the algorithm. For example, the algorithms keep track
of the objective function value in output.fval and also output the circumstances under
which the algorithm terminated in output.info. As an example, the objective function value
of each iterate can be plotted with

% Plot each iterate's objective function value.
[z,output] = minf_lbfgs(@f,@grad,z0);
semilogy(@:output.iterations,output.fval);

See the help information on the selected algorithm for more details.
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8 Global minimization of bivariate functions

Analytic bivariate polynomials Consider the problem of minimizing a bivariate polyno-
mial

minimize p(x,y), (bipol)
x,y €R

or more generally, a rational function

o opxy)

minimize :

xyeR  q(x,y)

Since all local minimizers (x*, y*) are stationary points, they are roots of the system of

(birat)

bivariate polynomials

op oq
ax? " Pax =0
op oq
ay? Pay =%

where g(x, y) = 1 in the case of minimizing a bivariate polynomial. With polysol2, Tensorlab
offers a numerically robust way of computing isolated real roots of a system of bivariate

polynomials
f(x,y)=0 _
o(xy) = 0 (bisys)

as the eigenvalues of a generalized eigenvalue problem [11, 15]. Stationary points of
bivariate polynomials and rational functions may be computed with polymin2 and ratmin2,
respectively.

Polyanalytic univariate polynomials Closely related is the problem of minimizing a
polyanalytic univariate polynomial

minimize p(z,2), (unipol)
zeC
or more generally, a rational function

o p(z,Z)
minimize —.
zeC q(z,Z)

(unirat)

Analogously to the analytic bivariate case, all local minimizers are roots of the system

op oq
529 Pa; =Y
op oq
gq - P£ =0,

where the derivatives are Wirtinger derivatives (cf. Section 7.1). The method polysol2 can

also solve systems of polyanalytic polynomials
f(z,Z)=0 ,
(unisys)
9(z,Zz) =0.

In fact, given a system of bivariate polynomials (bisys), polysol2 will first convert it to the
form (unisys) before computing the roots as the eigenvalues of a (complex) generalized
eigenvalue problem. Stationary points of real-valued polyanalytic polynomials and rational
functions may be computed with polymin2 and ratmin2, respectively.

42



8 GLOBAL MINIMIZATION OF BIVARIATE FUNCTIONS

8.1 Stationary points of polynomials and rational functions

Polynomials and rational functions In MATLAB, a polynomial p(x) is represented by a
row vector p = [ad ... a2 al a@] as

p(x):[ad A & ao}~[xd X2 x 1}T.

For example, the polynomial p(x) = x> + 2x? + 3x + 4 is represented by the row vector
p=1[12 3 4]. Its derivative % can be computed with polyder(p) and its zeros can be

computed with roots(p).

The stationary points of p(x), i.e., all x* which satisfy %(X*) = 0, are the output of
roots(polyder(p)). However, some of these solutions may have a small imaginary part
which correspond to a numerical zero. The stationary points can also be computed as
roots of the polynomial’s derivative with polymin(p), which deals with solutions with small
imaginary part and returns only real solutions.

px)

Analogously, the stationary points of a a rational function a0

are given by
roots(conv(polyder(p),q)-conv(p,polyder(q)))

where conv(p,q) is the convolution of the two row vectors p and q and is equivalent to
computing the coefficients of the polynomial p(x) - g(x). As in the polynomial case, there

are a few numerical issues which can be dealt with by computing the stationary points of

g%%rVWth ratmin(p,q)

Bivariate polynomials and rational functions In Tensorlab, a bivariate polynomial p(x, y)
is represented by a matrix p as

doo " dody
p(x,y)=[1 y -y

ag,o0 ‘' ad,d Xé
For example, the six-hump camel back function [6]
1
p(x,y) = 4x® — 2.1x* + §X6 +xy —4y? + 4yt

is represented by the matrix

p=[0 © 4 @ -2.10 1/3; ...
1 @ © o o o
4 90 o 0 © 0o o
@ 0 0 © 0 0 o
4 o 0 0 o o ol;

and can be seen in Figure 8.1. The stationary points of the polynomial p(x,y) can be
op _ 0p _
ox — by
minimum, select the solution with smallest function value using

computed as the solutions of the system 0 with polymin2(p). To obtain a global

[xy,v] = polymin2(p);
[vmin,idx] = min(v);
xymin = xy(idx,:);
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To visualize the level zero contour lines of % and % in the neighbourhood of the stationary

y
points, set options.Plot = true as follows

p = randn(6); % Generate random bivariate polynomial of coordinate degree 5.
options.Plot = true;
Xy = polymin2(p,options);

or inline as polymin2(randn(6),struct('Plot"',true)).

p(x.y)

Figure 8.1: The six-hump camel back function and its stationary points as red dots.

The corresponding system of polynomials is solved by polysol2. The latter includes several
balancing steps to improve the accuracy of the solution. For some poorly scaled problems,
the method may fail to find all solutions of the system. In that case, try decreasing the
polysol2 balancing tolerance options.TolBal to a smaller value, e.g.,

options.TolBal = 1e-4;
Xy = polymin2(p,options);

Computing the stationary points of a bivariate rational function Zgig is completely analogous

to the polynomial case. The following example generates a random bivariate rational function
and computes its stationary points:

p
q = randn(4); % Random bivariate polynomial of coordinate degree 3.
options.Plot = true;

xy = ratmin2(p,q,options);

randn(6); % Random bivariate polynomial of coordinate degree 5.

The inline equivalent of this example is ratmin2(randn(6),randn(4),struct('Plot',true)).
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Polyanalytic polynomials and rational functions Polyanalytic polynomials p(z,Z) are
represented by a matrix p as

doo ' dods
p(z,z) =11 z --- fdy}.

ad,0 "' ddydy S0

For example, the polynomial p(z,Z) = 1+2z+ 322 + 474527+ 622Z + 722 is represented
by the matrix

p=1[123; ...
456; ...
7 0 0];

However, minimizing a polyanalytic polynomial p(z,Z) only makes sense if p(z,Z) is real-
valued for all z € C. A polyanalytic polynomial is real-valued if and only if its matrix
representation is Hermitian, i.e., p == p'. As with bivariate polynomials, the stationary points
of a real-valued polyanalytic polynomial p(z,Z) can be computed with polymin2(p).

As an example, the stationary points of a pseudorandom real-valued polyanalytic polynomial

can be computed with
p = rand(6)+rand(6)*1i;
P = pxp’;
options.Plot = true;

Xy = polymin2(p,options);

Computing the stationary points of a polyanalytic rational function 5 is completely

analogous to the polynomial case. For example,

p = rand(6)+rand(6)*1i; p = p*p"';
q rand(4)+rand(4)*1i; q = g*q';
options.Plot = true;

xy = ratmin2(p,q,options);

Remark If the matrix p contains complex coefficients and is Hermitian, polymin2 will
treat p as a real-valued polyanalytic polynomial. Otherwise, it will be treated as a bivariate
polynomial. In some cases it may be necessary to specify what type of polynomial p is.
In that case, set options.Univariate to true if p is a real-valued polyanalytic polynomial
and false otherwise. The same option also applies to ratmin2.

8.2 Isolated solutions of a system of two bivariate polynomials

The functions polymin2 and ratmin2 depend on the lower level function polysol2 to compute
the isolated solutions of systems of bivariate polynomials (bisys) or systems of polyanalytic
univariate polynomials (unisys). In the case (bisys), polysol2(p,q) computes the isolated
real solutions of the system p(x, y) = g(x,y) = 0. A solution (x*, y*) is said to be isolated
if there exists a neighbourhood of (x*, y*) in C? that contains no solution other than
(x*,y*). Some systems may have solutions that are isolated in R?, but not in C2.
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Remark By default, polysol2(p,q) assumes p and q are polyanalytic univariate if at
least one of p and q contains complex coefficients. If this is not the case, the user can
specify the type of polynomial by setting options.Univariate to true if both polynomials
are polyanalytic univariate or false otherwise.

The algorithm in polysol2 applies several balancing steps to the problem in order to
improve the accuracy of the computed roots, before refining them with Newton-Raphson.
If the system is poorly scaled, it may be necessary to decrease the balancing tolerance
options.TolBal to a smaller value. In Figure 8.2, the solutions of a relatively difficult
bivariate system p(x,y) = q(x,y) = 0 are plotted. The polynomials p(x, y) and q(x, y)
are both of total degree 20 and have coefficients of which the exponents (in base 10) range
between 1 and 7.

| pxy) =0f
—qxy) =0

Figure 8.2: A system of bivariate polynomials p(x, y) = q(x,y) = 0 of total degree 20.

The following example generates a random bivariate system, computes its isolated solutions
and plots the results:

p = tril(randn(5));

g = triu(randn(5));

options.Plot = true; % Note that plotting can take a while.
xy = polysol2(p,q,options);
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