
Function nnmf_sca: Nonnegative Matrix Factorization and Sparse Component Analysis.

The goal of Blind Source Separation (BSS) methods is to estimate the physical sources of a mixing system.
Most BSS models can be expressed algebraically as a factorization of a data matrix into the factor matrices:

    

where the symbol ∘ denotes the outer product,  is a scaling matrix (possibly I), the
columns of B are the unknown source signals (factors or latent variables), the columns of A are the
associated mixing vectors (or factor loadings), and E is noise due to unmodelled part of the data or model
error.

Without some a priori knowledge, or without specific constraints, it is not possible to estimate uniquely the
original source signals. However, often X can be nonnegative and the corresponding hidden components
of X may have a physical meaning only when nonnegative. In practice, both nonnegative matrix
factorization, NMF, and sparse component analysis, SCA, of data can be necessary for the underlying latent
components to have a physical interpretation.

In standard NMF we only assume nonnegativity of the factor matrices A and B, and unlike ICA, we do
not assume that the sources are independent. In order to estimate factor matrices A and B we need

to quantify a cost function, the distance between the data matrix  and the NMF model . The
simplest distance measure is based on the Frobenius norm:

also referred to as the squared Euclidean distance. Alternating minimization of such a cost leads to
the Alternating Least Squares (ALS) algorithm: in this method, after an initial random initialization of A, a
least squares solution for A with B fixed and for B with A fixed is carried out iteratively until the cost function
reaches a minimum, or the difference in cost function between consecutive iterations becomes smaller
than a given tolerance value, or a maximum number of iterations is reached. In each iteration, the negative
elements of A and B and the off-diagonal elements of D are replaced with 0 or with a very small number ε:
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where a + superscript indicate the Moore-Penrose pseudoinverse. A simple modification of this algorithm
allows also the imposition of a sparseness constraint (with or without nonnegativity) on the A matrix. In this
case at each iteration we set to 0 a given fraction of the smallest elements of A. This way, Nonnegative
matrix factorization (NNMF) turns into Sparse component analysis (SCA). The algorithm is implemented in
the function nnmf_sca.

nnmf_sca can be conveniently used to obtain a lower rank approximation of the original matrix X as ,
with a diagonal matrix D, or constraining D = I. The following are some examples of possible uses
of nnmf_sca:

% function [ A,D,Bt,X_hat,niter,sse,sse_diff,tot_sparseness,sparseness ] = ...
%    nnmf_sca(X,k,dchoice,achoice,asparse,schoice,maxiter)
% Nonnegative matrix factorization and/or Sparse component analysis.
%
% Usage:
% [ A,D,Bt,X_hat,niter,sse,sse_diff,sparseness,tot_sparseness,sparseness ] = ...
%    nnmf_sca(X,k,dchoice,balance,achoice,asparse,schoice,maxiter)
%
% Inputs:
% X:  m x n data matrix.
% k:  number of factors requested.
% Two choices for the D matrix:
% dchoice:  diag|ident
% Three  choices for the A matrix:
% achoice:  nneg|sparse|both
% asparse:  level of sparseness 
% Two choices for sparseness, random or along the long dimension of X:
% schoice:  random|bylong
% maxiter:  maximum number of iterations allowed.
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%
% Outputs:
% A,D,Bt
% X_hat:  A*D*Bt
% niter:  total number of iterations used.
% sse:  sum of squared errors
% sse_diff:  difference in sse between final iterations
% tot_sparseness:  total sparseness
% sparseness:  sparseness along the long dimension  

X = randi(20,10,50)

X = 10×50
    17    12    14    14     1     8     5    13     8    16     8    20    18
    16     9     9     4     8     9     9     8    11     6    10     4    10
    12    13    13     9     4    17     3    16     1    16     4     3     8
    18    16    20     3     6     3    16     1    20     6     8    17    12
     3    17     9     2     3    15    10     2    13    19    11     7     5
    18    17     6    10     6    16     9     6     8     3     9     5     1
    19     1     9     2     8    19    12    20    10    18    17    18     8
     5     5    17    13    11    19    12    15    12    15     5    19     2
    20     4    11     1     8    14     2     1    15    16    12    11    16
     2     7    19     7     9    14    20    10    14     2    12    11    17

% X = randi(20,50,10)
openvar A, openvar D, openvar Bt, openvar X, openvar X_hat

% NNMF
[ A,D,Bt,X_hat,niter,sse,sse_diff,tot_sparseness ] = nnmf_sca(X,5);
[ A,D,Bt,X_hat,niter,sse,sse_diff,tot_sparseness ] = nnmf_sca(X,5,'diag'); 
[ A,D,Bt,X_hat,niter,sse,sse_diff,tot_sparseness ] = nnmf_sca(X,10,'diag');
[ A,D,Bt,X_hat,niter,sse,sse_diff,tot_sparseness ] = nnmf_sca(X,10,'ident');

% SCA
[ A,D,Bt,X_hat,niter,sse,sse_diff,tot_sparseness ] = nnmf_sca(X,5,'ident','sparse');
[ A,D,Bt,X_hat,niter,sse,sse_diff,tot_sparseness,sparseness ] = ...
    nnmf_sca(X,5,'ident','sparse',0.3);
[ A,D,Bt,X_hat,niter,sse,sse_diff,tot_sparseness,sparseness ] = ...
    nnmf_sca(X,10,'diag','sparse',0.3,'bylong'); 
[ A,D,Bt,X_hat,niter,sse,sse_diff,tot_sparseness,sparseness ] = ...
    nnmf_sca(X,5,'ident','sparse',0.3,'random');

 % NNMF + SCA
[ A,D,Bt,X_hat,niter,sse,sse_diff,tot_sparseness,sparseness ] = ...
    nnmf_sca(X,5,'ident','both',0.3,'bylong');
[ A,D,Bt,X_hat,niter,sse,sse_diff,tot_sparseness,sparseness ] = ...
    nnmf_sca(X,5,'diag','both',0.3,'bylong');
[ A,D,Bt,X_hat,niter,sse,sse_diff,tot_sparseness,sparseness ] = ...
    nnmf_sca(X,5,'diag','both',0.3,'bylong');
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[ A,D,Bt,X_hat,niter,sse,sse_diff,tot_sparseness,sparseness ] = ...
    nnmf_sca(X,5,'diag','both',0.3,'random');
[ A,D,Bt,X_hat,niter,sse,sse_diff,tot_sparseness,sparseness ] = ...
    nnmf_sca(X,10,'diag','both',0.3,'random');
[ A,D,Bt,X_hat,niter,sse,sse_diff,tot_sparseness,sparseness ] = ...
    nnmf_sca(X,10,'ident','both',0.3,'random');
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