Function nnmf_sca: Nonnegative Matrix Factorization and Sparse Component Analysis.

The goal of Blind Source Separation (BSS) methods is to estimate the physical sources of a mixing system.
Most BSS models can be expressed algebraically as a factorization of a data matrix into the factor matrices:
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where the symbol - denotes the outer product, D = diag[4,, ..., 4,] is a scaling matrix (possibly 1), the

columns of B are the unknown source signals (factors or latent variables), the columns of A are the
associated mixing vectors (or factor loadings), and E is noise due to unmodelled part of the data or model
error.
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Without some a priori knowledge, or without specific constraints, it is not possible to estimate uniquely the
original source signals. However, often X can be nonnegative and the corresponding hidden components

of X may have a physical meaning only when nonnegative. In practice, both nonnegative matrix
factorization, NMF, and sparse component analysis, SCA, of data can be necessary for the underlying latent
components to have a physical interpretation.

In standard NMF we only assume nonnegativity of the factor matrices A and B, and unlike ICA, we do
not assume that the sources are independent. In order to estimate factor matrices A and B we need

to quantify a cost function, the distance between the data matrix and the NMF model X = ADBT. The
simplest distance measure is based on the Frobenius norm:
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also referred to as the squared Euclidean distance. Alternating minimization of such a cost leads to

the Alternating Least Squares (ALS) algorithm: in this method, after an initial random initialization of A, a
least squares solution for A with B fixed and for B with A fixed is carried out iteratively until the cost function
reaches a minimum, or the difference in cost function between consecutive iterations becomes smaller
than a given tolerance value, or a maximum number of iterations is reached. In each iteration, the negative
elements of A and B and the off-diagonal elements of D are replaced with O or with a very small number &:
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where a + superscript indicate the Moore-Penrose pseudoinverse. A simple madification of this algorithm
allows also the imposition of a sparseness constraint (with or without nonnegativity) on the A matrix. In this
case at each iteration we set to 0 a given fraction of the smallest elements of A. This way, Nonnegative
matrix factorization (NNMF) turns into Sparse component analysis (SCA). The algorithm is implemented in
the function nnmf_sca.

nnmf_sca can be conveniently used to obtain a lower rank approximation of the original matrix X as ADBT,

with a diagonal matrix D, or constraining D = I. The following are some examples of possible uses
of nnmf_sca:

function [ A,D,Bt,X hat,niter,sse,sse diff,tot sparseness,sparseness ] =
nnmf sca (X, k,dchoice, achoice, asparse, schoice, maxiter)
Nonnegative matrix factorization and/or Sparse component analysis.

Usage:
[ A,D,Bt,X hat,niter,sse,sse diff, sparseness,tot sparseness,sparseness ] =
nnmf sca (X, k,dchoice,balance,achoice,asparse,schoice,maxiter)

Inputs:

X: m x n data matrix.

k: number of factors requested.
Two choices for the D matrix:

00 o0 A 00 o0 A A O O O AN A O A A O O o° o°

dchoice: diag]|ident

Three choices for the A matrix:

achoice: nnegl|sparse|both

asparse: level of sparseness

Two choices for sparseness, random or along the long dimension of X:
schoice: random|bylong

maxiter: maximum number of iterations allowed.



Outputs:

% A,D,Bt

% X _hat: A*D*Bt

% niter: total number of iterations used.

% sse: sum of squared errors

% sse diff: difference in sse between final iterations
% tot sparseness: total sparseness

% sparseness: sparseness along the long dimension

X = randi (20,10,50)

X = 10x50
17 12 14 14 1 8 5 13 8 16 8 20 18 *
16 9 9 4 8 9 9 8 11 6 10 4 10
12 13 13 9 4 17 3 16 1 16 4 3 8
18 16 20 3 6 3 16 1 20 6 8 17 12
3 17 9 2 3 15 10 2 13 19 11 7 5
18 17 6 10 6 16 9 6 8 3 9 5 1
19 1 9 2 8 19 12 20 10 18 17 18 8
5 5 17 13 11 19 12 15 12 15 5 19 2
20 4 11 1 8 14 2 1 15 16 12 11 16
2 7 19 7 9 14 20 10 14 2 12 11 17

% X = randi (20,50,10)
openvar A, openvar D, openvar Bt, openvar X, openvar X hat

% NNMF

[ A,D,Bt,X hat,niter,sse,sse diff,tot sparseness ] = nnmf sca(X,5);

[ A,D,Bt,X hat,niter,sse,sse diff,tot sparseness ] = nnmf sca(X,5,'diag');

[ A,D,Bt,X hat,niter,sse,sse diff,tot sparseness ] = nnmf sca(X,10,'diag");
[ A,D,Bt,X hat,niter,sse,sse diff,tot sparseness ] = nnmf sca(X,10,'ident');

SCA
A,D,Bt,X hat,niter,sse,sse diff,tot sparseness ] nnmf sca(X,5,'ident', 'sparse');
A,D,Bt,X hat,niter,sse,sse diff,tot sparseness,sparseness ] =
nnmf sca(X,5,'ident', 'sparse',0.3);

[ A,D,Bt,X hat,niter, sse,sse diff,tot sparseness,sparseness ] =

nnmf sca(X,10, 'diag', 'sparse',0.3, 'bylong'") ;
[ A,D,Bt,X hat,niter, sse,sse diff,tot sparseness,sparseness ] =
nnmf sca(X,5,'ident', 'sparse',0.3, 'random') ;
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$ NNMFEF + SCA

[ A,D,Bt,X hat,niter,sse,sse diff,tot sparseness,sparseness ] =
nnmf sca(X,5,'ident', 'both',0.3, 'bylong"');

[ A,D,Bt,X hat,niter,sse,sse diff,tot sparseness,sparseness ] =
nnmf sca(X,5,'diag', 'both',0.3, 'bylong') ;

[ A,D,Bt,X hat,niter,sse,sse diff,tot sparseness,sparseness ] =
nnmf sca(X,5,'diag', 'both',0.3, 'bylong') ;
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[ A,D,Bt,X hat,niter, sse,sse diff,tot sparseness,sparseness ]
nnmf sca(X,5,'diag', 'both',0.3, 'random') ;

[ A,D,Bt,X hat,niter, sse,sse diff,tot sparseness,sparseness ]
nnmf sca(X,10, 'diag', '"both',0.3, 'random') ;

[ A,D,Bt,X hat,niter, sse,sse diff,tot sparseness,sparseness ]
nnmf sca(X,10, 'ident', 'both', 0.3, "'random'") ;



