
Function nnmf_sca: Nonnegative Matrix Factorization and Sparse Component Analysis.

The goal of Blind Source Separation (BSS) methods is to estimate the physical sources of a mixing system.
Most BSS models can be expressed algebraically as a factorization of a data matrix into the factor matrices:

where the symbol ∘ denotes the outer product, is a scaling matrix (possibly I), the
columns of B are the unknown source signals (factors or latent variables), the columns of A are the
associated mixing vectors (or factor loadings), and E is noise due to unmodelled part of the data or model
error.

Without some a priori knowledge, or without specific constraints, it is not possible to estimate uniquely the
original source signals. However, often X can be nonnegative and the corresponding hidden components
of X may have a physical meaning only when nonnegative. In practice, both nonnegative matrix
factorization, NMF, and sparse component analysis, SCA, of data can be necessary for the underlying latent
components to have a physical interpretation.

In standard NMF we only assume nonnegativity of the factor matrices A and B, and unlike ICA, we do
not assume that the sources are independent. In order to estimate factor matrices A and B we need

to quantify a cost function, the distance between the data matrix and the NMF model . The
simplest distance measure is based on the Frobenius norm:

also referred to as the squared Euclidean distance. Alternating minimization of such a cost leads to
the Alternating Least Squares (ALS) algorithm: in this method, after an initial random initialization of A, a
least squares solution for A with B fixed and for B with A fixed is carried out iteratively until the cost function
reaches a minimum, or the difference in cost function between consecutive iterations becomes smaller
than a given tolerance value, or a maximum number of iterations is reached. In each iteration, the negative
elements of A and B and the off-diagonal elements of D are replaced with 0 or with a very small number ε:

1

where a + superscript indicate the Moore-Penrose pseudoinverse. A simple modification of this algorithm
allows also the imposition of a sparseness constraint (with or without nonnegativity) on the A matrix. In this
case at each iteration we set to 0 a given fraction of the smallest elements of A. This way, Nonnegative
matrix factorization (NNMF) turns into Sparse component analysis (SCA). The algorithm is implemented in
the function nnmf_sca.

nnmf_sca can be conveniently used to obtain a lower rank approximation of the original matrix X as ,
with a diagonal matrix D, or constraining D = I. The following are some examples of possible uses
of nnmf_sca:

% function [A,D,Bt,X_hat,niter,sse,sse_diff,tot_sparseness,sparseness] = ...
% nnmf_sca(X,k,dchoice,achoice,asparse,schoice,maxiter)
% Nonnegative matrix factorization and/or Sparse component analysis.
%
% Usage:
% [A,D,Bt,X_hat,niter,sse,sse_diff,sparseness,tot_sparseness,sparseness] = ...
% nnmf_sca(X,k,dchoice,balance,achoice,asparse,schoice,maxiter)
%
% Inputs:
% X: m x n data matrix.
% k: number of factors requested.
% Two choices for the D matrix:
% dchoice: diag|ident
% Three choices for the A matrix:
% achoice: nneg|sparse|both
% asparse: level of sparseness
% Two choices for sparseness, random or along the long dimension of X:
% schoice: random|bylong
% maxiter: maximum number of iterations allowed.

2

%
% Outputs:
% A,D,Bt
% X_hat: A*D*Bt
% niter: total number of iterations used.
% sse: sum of squared errors
% sse_diff: difference in sse between final iterations
% tot_sparseness: total sparseness
% sparseness: sparseness along the long dimension

X = randi(20,10,50)

X = 10×50
 17 12 14 14 1 8 5 13 8 16 8 20 18
 16 9 9 4 8 9 9 8 11 6 10 4 10
 12 13 13 9 4 17 3 16 1 16 4 3 8
 18 16 20 3 6 3 16 1 20 6 8 17 12
 3 17 9 2 3 15 10 2 13 19 11 7 5
 18 17 6 10 6 16 9 6 8 3 9 5 1
 19 1 9 2 8 19 12 20 10 18 17 18 8
 5 5 17 13 11 19 12 15 12 15 5 19 2
 20 4 11 1 8 14 2 1 15 16 12 11 16
 2 7 19 7 9 14 20 10 14 2 12 11 17

% X = randi(20,50,10)
openvar A, openvar D, openvar Bt, openvar X, openvar X_hat

% NNMF
[A,D,Bt,X_hat,niter,sse,sse_diff,tot_sparseness] = nnmf_sca(X,5);
[A,D,Bt,X_hat,niter,sse,sse_diff,tot_sparseness] = nnmf_sca(X,5,'diag');
[A,D,Bt,X_hat,niter,sse,sse_diff,tot_sparseness] = nnmf_sca(X,10,'diag');
[A,D,Bt,X_hat,niter,sse,sse_diff,tot_sparseness] = nnmf_sca(X,10,'ident');

% SCA
[A,D,Bt,X_hat,niter,sse,sse_diff,tot_sparseness] = nnmf_sca(X,5,'ident','sparse');
[A,D,Bt,X_hat,niter,sse,sse_diff,tot_sparseness,sparseness] = ...
 nnmf_sca(X,5,'ident','sparse',0.3);
[A,D,Bt,X_hat,niter,sse,sse_diff,tot_sparseness,sparseness] = ...
 nnmf_sca(X,10,'diag','sparse',0.3,'bylong');
[A,D,Bt,X_hat,niter,sse,sse_diff,tot_sparseness,sparseness] = ...
 nnmf_sca(X,5,'ident','sparse',0.3,'random');

 % NNMF + SCA
[A,D,Bt,X_hat,niter,sse,sse_diff,tot_sparseness,sparseness] = ...
 nnmf_sca(X,5,'ident','both',0.3,'bylong');
[A,D,Bt,X_hat,niter,sse,sse_diff,tot_sparseness,sparseness] = ...
 nnmf_sca(X,5,'diag','both',0.3,'bylong');
[A,D,Bt,X_hat,niter,sse,sse_diff,tot_sparseness,sparseness] = ...
 nnmf_sca(X,5,'diag','both',0.3,'bylong');

3

[A,D,Bt,X_hat,niter,sse,sse_diff,tot_sparseness,sparseness] = ...
 nnmf_sca(X,5,'diag','both',0.3,'random');
[A,D,Bt,X_hat,niter,sse,sse_diff,tot_sparseness,sparseness] = ...
 nnmf_sca(X,10,'diag','both',0.3,'random');
[A,D,Bt,X_hat,niter,sse,sse_diff,tot_sparseness,sparseness] = ...
 nnmf_sca(X,10,'ident','both',0.3,'random');

4

