
Pharmacological classification of drugs by principal component
analysis (PCA) based on molecular modeling and high-performance
liquid chromatography (HPLC) retention data is proposed. First, a
group of 20 drugs of recognized pharmacological classification are
chromatographed in eight diversified HPLC systems, applying
columns with octadecylsilanes, phosphatidylcholine, as well as
α1-glycoprotein and albumin. Additionally, molecular modeling
studies, based on the structural formula of the drugs considered,
are performed. Sixteen structural descriptors are derived. A matrix
of 20 × 24 HPLC data together with molecular parameters are
subjected to principal component analysis, and this revealed five
main factors with eigenvalues higher than 1. The first principal
component (factor 1) accounted for 47.8% of the variance in the
data, and the second principal component (factor 2) explained
21.0% of data variance. The total data variance was 82.6% and is
explained by the first three factors. The clustering of drugs is in
accordance with their pharmacological classification, which proved
that the PCA of the HPLC retention data, together with their
structural descriptors, allowed the drugs to be segregated
accurately to their pharmacological properties. This may be of help
in reducing the number of biological assays needed in the
development of a new drug.

Introduction

Molecular modeling is the term used to refer to theoretical
methods and computational techniques which enable modeling
or mimic the behavior of molecules. These techniques are used
in the areas of computational chemistry, computational biology,
and materials science for studying molecular systems, in both
small chemical systems as well as large biological molecules. The
main feature of recognized molecular modeling techniques is
the atomistic level description for the molecular systems. It
means that the most basic level of information is based on indi-
vidual atoms or small groups of atoms. However, this is in con-
trast to already existing and applied techniques in the practice of
quantum chemistry, where electronic structure calculations are
considered explicitly.

Computational chemistry belongs to a branch of chemistry
that applies computer sciences to assist in solving chemical
problems using the results of theoretical chemistry to calculate
the physicochemical properties of molecules. Additionally, sev-
eral major areas may be distinguished within computational
chemistry; for example, identifying correlations between chem-
ical structures and activities (quantitative structure-activity rela-
tionships, QSAR) to help during the efficient synthesis of
compounds, or to design molecules that interact in specific ways
with other molecules (1).

The software programs used in computational chemistry
allow for the generation of a large number of molecular descrip-
tors. They are usually based on the empirical, semi-empirical, or
ab initio methods employed to cover static and dynamic situa-
tions of the individual molecule. The methods known as empir-
ical or semi-empirical employ additional experimentally
obtained results to facilitate and improve the calculations.
Methods that do not include any empirical parameters are
directly derived from theoretical principles and are called ab
initio methods (2).

Molecular descriptors are powerful tools in QSAR studies, and,
according to definition, are the final results of the logical and
mathematical procedure transforming chemical information
encoded within a symbolic representation of a molecule into
useful numbers used in some standardized experiments.
Molecular descriptors play an increasing role in scientific calcu-
lations. Due to their large number within diversified sources of
chemical information, they are useful in understanding relation-
ships between molecular structure and experimental evidence.
Knowledge of statistics, chemometrics, and QSAR approaches
can, therefore, be considered as necessary, especially in combi-
nation with multiple linear regression (MLR), partial least
squares regression (PLSR), classification methods, principal
component analysis (PCA), factor analysis (FA), or artificial
neural networks (ANN) (3).

Principal component analysis (PCA) is a data processing
method designed to extract and visualize systematic patterns or
trends in large data matrices. By PCA or FA, one can reduce the
number of variables in a data set using findings of linear combi-
nations of variables explaining most of the variability. It is com-
monly known that the independent variables in multiple linear
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regression analysis can often be mutually inter-correlated and,
therefore, are not directly suitable for this kind of analysis. On
the other hand, such variables can be subjected to multivariate
analysis such as PCA or FA. Using those techniques, all original
parameters can be combined in a linear manner to the limited
number of orthogonal principal components (factors) (4).

On the other hand, high-performance liquid chromatography
(HPLC), which is the most widely used chromatographic tech-
nique in medicinal chemistry, can be used to determine some
physicochemical measures, such as lipophilicity parameters for
pharmacologically active compounds. It often combins the
unique properties of HPLC retention parameters with a view to
model the pharmacokinetic activities of drugs and is based on two
general facts. The first one is associated with the fundamental
processes of drug actions. Biological processes of absorption, dis-
tribution, excretion, and receptor binding are dynamic in nature,
as is the analyte distribution process in chromatography. The
same, or at least similar, basic intermolecular interactions deter-
mine the behavior of chemical compounds, both in biological and
chromatographic environments. The second fact is that HPLC is
a unique method producing large amounts of precise and repro-
ducible data. More importantly, in contrast to biological systems,
all experimental conditions in chromatography can be kept con-
stant, and, finally, the analyte structure becomes the single inde-
pendent variable in the analyzed system (5,6).

Pharmacological classification of a large set of drugs can be
predicted on the basis of HPLC retention data using the chemo-
metric method of analysis as the principal component analysis
(PCA) (7–10). Therefore, structural descriptors derived by calcu-
lation chemistry, or based solely on the structural formula of a
given compound in combination with HPLC retention data, can
be found as a value of a wide application in QSAR analysis for pre-
dicting the pharmacological classification of drugs with the use
of PCA (11–13).

The aim of the study was to test the influence of molecular
modeling descriptors, obtained with the use of both semi-empir-
ical and ab intio methods along with HPLC retention data, on the
prediction of pharmacological classification of the selected drugs
applying principal component analysis method. The following 20
pharmacologically closely related drugs were selected for the
studies: acyclovir from a group of antiviral drugs (14); pyrantel
from a group of antihelmintic drugs (15); metronidazole, ronida-
zole, and tinidazole from a group of antiprotozoal nitroimidazole
antibiotics (16); ciprofloxacin, ofloxacin, and gatifloxcin from a
group of antitbacterial fluoroquinolones (17); sulphanilamide,
sulphacetamide, sulphacarbamide, sulphaguanidine, sulphathia-
zole, sulphamethoxazole, sulphamoxol, sulphadiazine, sulpham-
erazine, sulphamethazine, sulphadimethoxine, and sulpha-
quinoxaline from a group of antibacterial sulphonamides (16).

Materials and Methods

Drugs
In all experiments, the following drugs were investigated.

Acyclovir (1), pyrantel (2), metronidazole (3), tinidazole (5), sul-
phanilamide (9), sulphacetamide (10), sulphacarbamide (11),

sulphaguanidine (12), sulphadimethoxine (15), sulphaquinoxa-
line (16), and sulphathiazole (19) were from Polpharma S.A.
(Starogard Gdanski, Poland). Sulphamerazine (13), sulphadi-
azine (14), sulphamoxol (17), sulphamethoxazole (18), and sul-
phamethazine (20) were from Sigma-Aldrich (Deisenhofen,
Germany). Ronidazole (4) was from Menadiona S.A. (Barcelona,
Spain). Ciprofloxacin (6) was from Madex Pharmaceuticals Ltd.
(Logano, Switzerland). Ofloxacin (7) was from Ranbaxy
Laboratories Ltd. (New Delhi, India), and gatifloxcin (8) was form
Alfa Chem (Kings Points, NY).

Molecular descriptors
The structures of the tested compounds were preceded by

molecular modeling with the use of HyperChem 7.5 software
(HyperCube Inc., Gainesville, FL). First, the structures of the
compounds were geometrically pre-optimized, applying a
molecular mechanics force field procedure (with MM+ method).
It allowed for the preparation of the drugs’ structures for further
optimization steps. The resulting structures were optimized
then by means of the semi-empirical AM1 method and the Polak-
Ribiere algorithm, and a gradient limit of 0.01 kcal/Å was used.
Moreover, structures of compounds were geometrically opti-
mized with the use of the ab initio 6-31G method along with the
Polak-Ribiere algorithm, with a gradient limit of 0.01 kcal/Å.

The following molecular descriptors obtained with both semi-
empirical and ab initio methods were taken under the following
considerations: total energy (TE), highest occupied molecular
orbital energy (E_HOMO), lowest unoccupied molecular orbital
energy (E_LUMO), the values of the highest positive (MAX_POS),
and negative (MAX_NEG) atom charges that constitute a
molecule, total dipole moment (TDM), surface area of the
molecule available for solvent (SA), and molecule volume (V).

Chromatographic analysis
Chromatographic analysis was performed with the use of a

Waters SM 2690 Alliance HPLC system equipped with a PDA 996
diode detector (Waters Corporation, Milford, MA) and Compaq
Deskpro computer (Compaq Computer Corporation, Houston,
TX) with the Millennium 3.2 program for data collection and the
process control. The following HPLC columns were employed:
(i) XTerra RP18 column, 50 × 3.0 mm i.d. (Waters Corporation,
Milford, MA) packed with a hybrid stationary phase on the basis
silica gel and silicaorganic compounds, with chemically bounded
octadecylsilane, with particles size 5 µm; (ii) XTerra RP8 column,
150 × 3.9 mm i.d. (Waters Corporation) packed with hybrid sta-
tionary phase on the basis silica gel and silicaorganic com-
pounds, with chemically bounded octadecylsilane, with particles
size 5 µm; (iii) IAM PC C10/C3 column, 150 × 4.6 mm i.d. (Regis
Chemical Company, Morton Grove, IL) packed with silica propy-
lamine with the unreacted propylamine moieties endcapped
with methyl glycolate, and chemically bounded phosphatidyl-
choline, with particles size 12 µm; (iv) AGP column, 100 × 4.6
mm i.d. (ChromTech, Norsborg, Sweden) packed with silica gel
with chemically bounded α1-glycoprotein (AGP), with particles
size 5 µm; and (v) Hypersil HSA column, 50 × 4.6 mm i.d.
(Thermo-Hypersil-Keystone, Cheshire, UK), packed with silica
gel and bounded human blood serum albumin, with particles
size 5 µm.
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The compounds studied were chromatographed in isocratic
conditions on the columns mentioned previously at ambient
temperature. The mobile phase was 100% 0.025 M phosphate
buffer of pH 2.5 and 7.0. However, in the case of the AGP and
Hypersil columns, the experiments were performed with
propanol–0.025 M phosphate buffer of pH 7.0 with the propor-
tion 5:95 (% v/v) (the higher ionic strength and the concentra-
tion of the organic modifier could cause denaturation of the
protein as α1-glycoprotein or albumine bounded to silica gel sta-
tionary phase). The mobile phases used in HPLC were filtered

through a GF–F glass microfiber filter (Whatman, Maidstone,
UK) and degassed by ultrasonication immediately before use.
The detection wavelength was 220 nm. The compounds studied
were dissolved in methanol.

The logarithm of the HPLC retention factors (log k) for indi-
vidually chromatographed compounds in the given chromato-
graphic system were calculated, and their mean value obtained
from 3 independent experiments were subjected to further prin-
cipal component analysis.

Statistical analysis
The chemometric analysis was performed

with the use of Statistica 8.0 software
(StatSoft, Tulsa, OK) with the application of
principal component analysis (PCA). The
ordinal PCA method was used with earlier
data normalization. Moreover, the criterions,
such as the Kaiser criterion for the selection
of statistically important factors, as well as
the comprehensibility criterion for the selec-
tion factors important for scores for pharma-
cological interpretation, were used.
Additionally, according to the rule that the
highest PC (factor) loadings among the vari-
ables over 0.7 are statistically important, the
parameters (descriptors) which have the
most influence (significance) on the factors
were selected. On the other hand, any direct
clustering algorithms were not applied, and
eventual clustering was done by individual
marks done on two-dimensional scatter plot
of the scores of some properties (pharmaco-
logically and chemically related properties of
the compound studied) connected clusters
and/or subclusters.

Results and Discussion

The chemical structures of the considered
20 compounds are presented in Figure 1. The
values of all parameters both from 8 HPLC
retention parameters (XTerra RP18 2.5-
Hypersil 7.0) as well as 16 structural descrip-
tors (TE-V*) for considered compounds are
presented in Table IA–IB. The results of the
principal component analysis (factor 1 to
factor 6) as eigenvalue, the percentage of the
variance explained and the total variance
explained, obtained with the use of all 24
parameters, are presented in Table II. The
results of the principal component analysis
obtained with the use of all 24 parameters
are presented in Figure 2. Principal compo-
nent analysis led to the extraction of five
main factors with eigenvalue higher than 1
from the analyzed groups of parameters,
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Figure 1. Chemical structures of the studied compounds.
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with the first factor accounting for approxi-
mately 48% of the variance and the second
for approximately 21%. These data indicated
that the majority of the information (approx-
imately 69%) contained in the original data
matrix can be explained by two principal
components, and it can be interpreted that
the two principal components contain the
significant part of information held previ-
ously in original HPLC retention and molec-
ular properties variables. Moreover, the factor
1 depended mostly on log k values obtained
generally on all used columns (factor load-
ings over 0.7) in the set of HPLC retention
parameters, however, with less influence of
such columns as AGP and Hypersil HSA with
chemically bounded proteins. Additionally,
factor 1 depended mostly on total energy (TE
and TE*), surface area of the molecule avail-
able for solvent (SA and SA*), and the
molecule volume (V and V*) in the set of
molecular parameters obtained using both
the semi-empirical and the ab initio
methods. It is evident that these parameters
reflect the size (bulkiness) of the compounds
studied, and condenses mainly the informa-
tion of their approximate molecular size.
Chromatographically, the bulkiness of the
dissolved compounds mostly reflects their
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Table IB. Values of HPLC Retention Data and Molecular Descriptors Used in the Principal Component Analysis*

Molecular descriptors

Semi-empirical AM1 method Ab initio method

E_ E_ MAX_ MAX_ E_ E_ MAX_ MAX_
Comp. TE HOMO LUMO POS NEG TDM SA V TE* HOMO* LUMO* POS* NEG* TDM* SA* V*

1 –3170 –8.7 –0.19 0.26 –0.33 4.0 424 657 –21928 –8.4 3.49 1.03 –1.04 6.6 407 638
2 –2208 –8.5 –0.26 0.77 –0.52 2.8 406 648 –25328 –7.7 2.35 0.71 –0.92 2.9 408 648
3 –2470 –10.0 –1.07 0.62 –0.39 3.7 332 508 –16869 –10.0 0.78 0.63 –0.95 3.5 329 502
4 –2984 –10.1 –1.07 0.62 –0.42 6.5 365 555 –20371 –10.3 0.79 1.02 –0.93 7.4 360 548
5 –3295 –10.1 –1.24 2.81 –0.94 2.1 415 666 –31840 –10.4 0.36 1.46 –0.96 2.4 440 679
6 –4490 –8.8 –0.66 0.37 –0.41 7.6 533 901 –31051 –8.2 2.24 0.79 –1.07 8.7 521 884
7 –4967 –9.0 –0.83 0.37 –0.41 7.3 553 948 –34150 –8.5 2.15 0.79 –1.07 8.4 550 944
8 –5121 –8.8 –0.74 0.37 –0.41 6.3 575 1000 –35210 –8.4 2.20 0.79 –1.07 7.7 567 990
9 –2127 –9.2 –0.33 2.88 –0.95 6.2 327 491 –24152 –8.8 2.92 1.71 –1.01 7.7 337 503

10 –2732 –9.4 –0.72 2.87 –0.94 4.2 381 595 –28280 –9.2 2.48 1.82 –1.11 9.1 385 605
11 –2797 –9.4 –0.75 2.88 –0.95 7.4 377 581 –28716 –9.1 2.42 1.80 –1.11 8.9 381 586
12 –2696 –9.4 –0.63 2.88 –0.95 7.8 387 598 –28175 –8.8 3.02 1.83 –1.09 10.8 395 611
13 –2925 –9.0 –0.65 2.89 –0.92 7.8 427 669 –39554 –9.0 2.52 1.79 –1.09 9.1 421 674
14 –3079 –9.2 –0.38 2.88 –0.92 5.1 436 684 –31265 –8.9 2.67 1.84 –1.14 7.6 444 693
15 –4031 –9.4 –0.65 2.87 –0.93 7.6 526 843 –37461 –9.2 2.48 1.80 –1.15 11.6 529 848
16 –3619 –9.1 –0.59 2.89 –0.92 6.6 507 816 –35417 –8.6 1.88 1.83 –1.18 8.6 510 822
17 –3362 –8.7 –0.59 2.88 –0.92 5.8 476 752 –32897 –8.6 2.87 1.82 –1.17 7.3 479 762
18 –3205 –9.3 –0.58 2.88 –0.93 8.8 449 700 –31834 –9.1 2.73 1.82 –1.16 12.7 454 710
19 –3236 –9.2 –0.49 2.89 –0.92 4.8 470 741 –32327 –8.9 2.86 1.84 –1.14 6.7 472 747
20 –3391 –9.2 –0.30 2.88 –0.92 4.6 493 792 –33389 8.8 3.00 1.84 –1.18 6.8 500 799

* See the “Materials and methods” section for HPLC columns characteristics and definitions of molecular parameters.

Table IA. Values of HPLC Retention Data and Molecular Descriptors Used in the Principal Component
Analysis*

HPLC retention data

XTerra XTerra XTerra XTerra IAM IAM AGP Hypersil
Compound RP18 2.5 RP18 7.0 RP8 2.5 RP8 7.0 PC 2.5 PC 7.0 7.0 7.0

1 0.43 0.56 0.34 0.45 0.10 0.16 –0.27 0.09
2 1.19 1.35 0.95 1.02 0.46 1.95 0.42 0.43
3 0.55 0.80 0.48 0.71 0.19 0.32 -0.28 0.11
4 0.79 0.82 0.73 0.75 0.34 0.30 –0.24 0.11
5 1.03 1.13 0.88 0.97 0.46 0.43 –0.29 0.11
6 2.22 1.70 1.28 1.19 1.30 1.84 0.18 0.51
7 2.03 2.24 1.20 1.26 1.00 1.66 0.20 0.57
8 2.53 1.95 1.37 1.37 1.48 1.93 0.08 0.47
9 0.36 0.44 0.40 0.49 0.26 0.32 –0.15 0.11

10 0.86 0.12 0.90 0.11 0.59 –0.12 –0.51 0.08
11 0.69 0.02 0.74 0.02 0.54 –0.12 –0.40 0.06
12 0.31 0.40 0.35 0.45 0.23 0.34 -0.10 0.16
13 1.13 1.16 1.12 1.13 0.94 0.92 0.11 0.55
14 0.93 0.58 0.93 0.56 0.65 0.24 –0.25 0.26
15 2.49 1.73 1.66 1.58 1.91 1.04 –0.08 1.85
16 2.65 1.94 1.73 1.83 2.26 1.23 0.24 1.90
17 1.39 1.46 1.26 1.31 0.92 0.91 0.01 0.45
18 1.67 0.85 1.62 0.77 1.35 0.35 –0.25 0.35
19 1.09 1.04 1.02 0.99 0.70 0.56 –0.11 0.34
20 1.27 1.46 1.12 1.30 0.75 0.84 0.02 0.33

* See the “Materials and methods” section for HPLC columns characteristics and definitions of molecular parameters.
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capacity to participate in non-specific interactions with the com-
ponents of HPLC system. Moreover, negative values of factor 1 of
HPLC retention parameters (loadings) proves that attractive dis-
persion interactions between the compound molecule and the
moieties of the stationary phases are weaker than the corre-
sponding dispersive interactions of the compound molecule and

the molecules of the eluent. On the other hand, the factor 2
depended mostly only on the values of the highest positive
(MAX_POS and MAX_POS*) and negative (MAX_NEG and
MAX_POS*) charge of the atoms that constitutes a molecule in
the set of molecular parameters, also obtained from both the
semi-empirical and the ab initio methods. In this case, factor 2
presented properties related to electronic properties rather than
their bulkiness.

As it is indicated herein, a significant part of information (total
data variance approximately 69%) can be explained by the first
two principal components. Therefore, a comparison of particular
compounds can be done on the basis of two principal component
scores (objects) plots. The obtained principal component scores
and positions of particular compounds on the plane determined
by factors 1 and 2 obtained for all 24 considered parameters are
presented in Figure 3. On the scatter diagram, the three main
clusters (I–III) have shown differentiation in pharmacological
features as well as in the chemical structure. The first main and

the largest cluster I included compounds from a
group of antibacterial sulphonamides (compounds
9–20), with the range of values of factor 1 from –1.5
to 1.2 and factor 2 from –0.3 to –0.5. Additionally,
compounds from this main cluster I form three
small clusters (see clusters IA–IC in Figure 3), and
show generally the similarities and dissimilarities in
the chemical structures of the antibacterial
sulphonamides studied. It is also important to note
that antibacterial sulphonamides are active against
chlamydia and both Gram-positive and Gram-nega-
tive bacteria, and inhibit folic acid biosynthesis in
prokaryotes by blocking the synthesis of dihydrofolic
acid by inhibition of the dihydropteroate synthase
(16). The positions of compounds such as sulphac-
etamide (10), sulphacarbamide (11), and sulph-
aguanidine (12) with sulphanilamide (9), a little
further away form cluster (see cluster IA in Figure 3),
comprising un-substituted sulphonamides and N1-
substituted by non-heterocyclic groups such as
acetylcarbonyl–, aminocarbonyl–, and aminoimi-
nometyl–. The points on the diagram of compounds
such as sulphamerazine (13), sulphadiazine (14),
sulphamoxol (17), sulphamethoxazole (18), sul-
phathiazole (19), and sulphamethazine (20) form
the next cluster (see cluster IB in Figure 3), com-
prising sulphonamides N1-substituted by five- or
six-atoms heterocyclic groups (thiazole or a pyrimi-
dine ring) being un-substituted or methyl-substi-
tuted (isoxazole and oxazole, or a pyrimidine ring),
compared to the cluster (see cluster IC in Figure 3)
including other chemically structural sulphon-
amides such as sulphadimetxoxine (15) with two
methoxyl- group linked to an N1-substituted by six-
atoms heterocyclic pyrimidine ring, and sul-
paquinoxaline (16) with N1-substituted by two
six-atoms heterocyclic quinoxaline group. Moreover,
compounds such as sulphamoxol (17) and sul-
phamethazine (20), and compounds such as sul-
phamerazine (13) and sulphathiazole (19) form two
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Table II. Summation of the Results of the Principal Component Analysis

No. of Variance Total variance
factor Eigenvalue explained (%) explained (%)

1 11.47 47.81 47.81
2 5.04 20.98 68.79
3 3.30 13.75 82.54
4 1.62 6.76 89.31
5 1.13 4.69 94.00
6 0.57 2.36 96.36

Figure 3. Two-dimensional scatter plot of the scores of individual drugs in the first two factors
extracted from HPLC retention data and structural parameters.

Figure 2. Two-dimensional loading plot.
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small clusters in cluster IB. The first cluster contains two
methyl-substituted sulphonamides, and the second one contains
sulphonamides with one methyl-substituted of N1-heterocyclic
group, respectively.

On the scatter diagram (cluster II, Figure 3), the second main
cluster, however small, was also observed and formed by the
antibacterial fluoroquinolones ciprofloxacin (6), ofloxacin (7),
and gatifloxacin (8) with the range of values of factor 1 from –1.6
to –1.2 and factor 2 from 1.0 to 1.2, and characterized a broad-
spectrum of antibacterial activity against both Gram-positive
and Gram-negative bacteria by inhibiting bacterial enzymes,
DNA gyrase and topoisomerase IV (17). Additionally, the com-
pounds ciprofloxacin (6) and gatifloxacin (7) are closer together
and show their chemical structure-related similarities connected
with the presence of the same cyclopropyl- group attached to a
quinoline ring.

Moreover, on the scatter diagram (cluster III, Figure 3) the
third main, but small and scattered cluster is located and formed
by compounds from the group of antiprotozoal nitroimidazole
antibiotics such as metronidazole (3), ronidazole (4), and tinida-
zole (5), with the range of values of factor 1 from 0.7 to 1.5 and
factor 2 from 0.7 to 1.7. Some distances between compounds
located in this cluster are probably connected with their dissim-
ilarities in chemical structures as well as in some of their addi-
tional pharmacological properties. Metronidazole (2-(2-methyl-
5-nitro-1H-imidazol-1-yl)ethanol) and tinidazole (1-(2-ethylsul-
fonylethyl)-2-methyl-5-nitro-imidazole) are mainly used in the
treatment of infections caused by amoebae, anaerobic bacteria
and protozoa as well as in the treatment of vaginal Trichomona
and Helicobacter pylori, whereas ronidazole (1-methyl-2-(car-
bamoyloxymethyl)-5-nitroimidazole) is characterized by in vivo
antiparasitic and antimycoplasmal activity, and also by some in
vivo antibacterial activity (16).

Finally, on the scatter diagram, Figure 3, there are two drugs
acyclovir (1) and pyrantel (2) not classified in any of the proposed
and pharmacologically related three main clusters. The latter
compound belongs to antihelmintic agents used in the treat-
ment of helminthes, hookworms, and roundworms (15). On the
other hand, aciclovir is a guanosine analogue antiviral drug used
for the treatment of herpes simplex virus infections, as well as in
the treatment of varicella zoster virus (14), and its location on
the scatter diagram (Figure 3) near tinidazole (5), located in a
cluster of antiprotozoal nitroimidazole antibiotics seems to be
rather unexpected.

Conclusions

Concluding the observations presented herein, the distribu-
tion of individual drugs on the plane determined by two factors
obtained on the basis of molecular modeling structural parame-
ters with the use of both the semi-empirical and the ab initio
methods, and log k values as theHPLC retention data produced
patterns in good agreement with pharmacological properties as
well as the chemical structures of the drugs in question.

From among all the 24 parameters, the most influence on the
value of factor 1 possessed all chromatographic parameters and

selected structural parameters reflecting the size (bulkiness) of
the compounds studied, in contrast to the lower influence
related to the electronic properties of the drugs the value of the
factor 2.
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