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A B S T R A C T

Gene regulatory network (GRN) inference, a longstanding challenge in computational biology, aims to construct
GRNs from genomic data. Graph Neural Networks (GNNs) are well-suited for this task due to their ability
to leverage both node features and topological relationships. This research systematically evaluated various
GNN variants, gradually narrowing the focus through a filtering process. The study considered multiple design
aspects, including layers, epochs, decoders, activation functions, graph structures, aggregation methods, skip
connections, dropout, and hidden dimensions. Ultimately, two promising models emerged, one based on the
Chebyshev spectral graph convolutional operator and the other on the Hypergraph convolutional operator,
demonstrating state-of-the-art performance. Notably, hypergraphs demonstrated superior performance on real
datasets with higher-order dependencies, while the Chebyshev model showed greater generalization across both
simulated and real datasets. The code for this research is available online at https://github.com/EmmaDPaul/
GRN-inference-using-GNN.
1. Introduction

Gene Regulatory Network (GRN) inference is a major research
area in computational biology. Genes code for a large number of
products that our body requires such as proteins, and RNA (Ribonu-
cleic Acid); the products of one gene can influence another one and
can even involve self-loops affecting the very same gene from which
it all started [1]. Inferring this entire regulatory network interac-
tion from gene expression data using experimentation is infeasible.
Computational methods strategically reduce the search space to the
most probable sets of relations through gene expression data analysis
like correlation-based analysis [2], network inference methods like
Bayesian Networks [3] and Differential Equation Models [4], which
can then be experimentally verified. This enables speeding up the
advancement of disease prognosis prediction.

In this work, we approach the problem of GRN inference by treating
it as a link prediction task within Graph Neural Networks (GNNs).
The primary motivation for employing GNNs lies in their ability to
utilize the features of two genes and their respective neighbors to
predict whether a link exists between them. The novelty of the study
is that it infers GRNs using a wide range of GNN convolution layer
variants on multiple benchmark datasets. Our contributions in this
paper encompass the following aspects:

1. Development of a semi-supervised edge classification framework
for GRN inference.

∗ Corresponding author.
E-mail addresses: emmapaul1993@cusat.ac.in (Emma Paul M.), jereesh@cusat.ac.in (Jereesh A.S.), san@cusat.ac.in (G. Santhosh Kumar).

2. Conducted a comprehensive comparison of GNN variants, ac-
tivation functions, decoder functions, and feature augmenta-
tion techniques, providing insights into their impact on GRN
inference accuracy.

3. The framework was rigorously tested on a variety of simu-
lated and real datasets, to assess performance and generalization
capabilities.

The paper includes an introduction to the context, providing a
brief overview of established techniques for constructing GRNs. It
then delves into the materials and methods, which encompass the
dataset and the methodology employed. Subsequently, the results and
discussion section offers a comparison between the proposed approach
and current methods. Finally, the paper concludes by mentioning the
limitations of the study, and a summary.

2. Background

There is a large number of unsupervised methods for GRN inference.
Many methods have been proposed over the years that come under
statistical and machine learning-based techniques. The summarized in-
formation on background techniques along with examples are provided
in Fig. 1.
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Fig. 1. Popular GRN inference techniques.
2.1. Information theoretic approaches

Our study explores information theoretic approaches for inferring
GRNs, with a focus on the MRNET [5] method. MRNET stands out
for its application of the maximum relevance/minimum redundancy
(MRMR) principle in feature selection within a supervised learning
framework. By selecting features that minimize redundancy with exist-
ing ones while maximizing mutual information with the target variable,
MRNET identifies gene relations using microarray data. However, like
other methods in this category, MRNET is susceptible to noise and may
oversimplify intricate regulatory relationships within GRNs, potentially
2

overlooking interaction directionality.
2.2. Regression models

Regression models utilize regression and feature selection methods
to deal with network inference by considering one target gene at a time
and recognizing potential regulators that best predict the target gene
state [6]. The main works under this category are provided in Fig. 1.
GENIE3 employs random forests to discern the genes influencing the
target gene. As the victor of the DREAM4 challenge, GENIE3 serves
as a widely used benchmark technique in the field. GENIE3-time is an
extension tailored for time series data, where the expression of a gene
at time point 𝑡+ 1 is regarded as dependent on the gene expressions at

time point 𝑡. One of the negatives of random forests is that there is very
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little understanding of how the feature selection with random forest
is performed as the internal working of individual trees and ensemble
can be difficult to interpret. TIGRESS employs a randomization tech-
nique similar to GENIE3 for scoring gene interactions; however, they
differ in their aggregation methods. GENIE3 utilizes feature aggregation
from decision trees, while TIGRESS employs the least angle regression
technique. In terms of results, TIGRESS initially provides superior
predictions with a set threshold but exhibits increasing errors further
down the list of interactions. The JUMP3 technique originates from the
idea of creating a hybrid approach, combining the advantages of both
model-free and model-based techniques. Starting with an on/off biolog-
ical model, it reconstructs edges using a tree-based approach inspired
by GENIE3. The jump tree decision function concept is grounded in
a probabilistic model. However, JUMP3 may encounter challenges in
precisely capturing time-lagged dependencies, particularly in time se-
ries data, and it can be computationally expensive. BiXGBoost identifies
regulatory and target genes for a specific gene using a bidirectional
BiXGBoost model. On the other hand, BTNET takes time-series data as
input to a boosted tree and computes a weighted adjacency matrix to
determine regulatory interactions between gene pairs. Both techniques
are based on gradient-boosting algorithms. It is important to note that
boosting techniques, including these, are less interpretable, given their
ensemble of trees, and they do not inherently consider the natural
network structure of a GRN.

2.3. Support vector machines (SVMs)

SIRENE employs SVMs to learn the classes of target and nontarget
genes associated with a Transcription Factor (TF). It utilizes genes with
no reported interaction with the TF as a negative set, which is then
divided for training and testing purposes. The use of local knowledge,
where a classifier is constructed for each TF to distinguish targets from
nontargets, is deemed less effective compared to a global approach.
The global approach considers all TF-target pairs for classifier creation,
making it applicable to any other TF-gene pair. CompareSVM is another
technique, that leverages SVMs to assess various SVM kernel methods
on simulated datasets. Its evaluation has been conducted on networks
with a node size below 200, and as the node size increases (around
500), the choice of inference relies on the nature of the experimental
condition. GRADIS is a supervised method that utilizes a network-based
portrayal of gene expression data. This more detailed representation
is utilized to differentiate between TF-gene pairs that interact and
those that do not, surpassing the mere capture of the relationship
between a TF and a gene. It is important to note, however, that GRADIS
necessitates prior knowledge of TFs for optimal utilization and entails
the construction of features.

2.4. Causality based techniques

While numerous machine learning approaches have been suggested,
a majority of them operate as black boxes, lacking interpretability.
GreyNet [7] introduces a sliding window technique based on grey the-
ory to identify gene regulatory interactions. These associations are sub-
sequently transformed into causal relationships using Granger causality
regression techniques, establishing directional regulatory links. How-
ever, this process presents challenges, given the potential existence
of cyclic feedback loops and multiple causal structures. SWING [8]
employs a windowed model based on multivariate Granger causality
to assess several regulators using time series datasets across various
time point delays. A seasonality differencing preprocessing followed
by regression-Granger causality-based was introduced in GranReg [9].
The approach introduced by Patil and Vaida [10] employs a deep
learning framework based on Granger causality for inferring GRNs. This
framework leverages graph convolutions and Long Short-Term Memory
to uncover causal relationships from gene expression data. However,
a significant drawback of employing Granger causality is its reliance
on stationary time series datasets, which proves to be a challenging
3

assumption to meet in the context of GRNs.
2.5. Other techniques

Wisdom of Crowds uses ensemble learning and combines six un-
supervised approaches for prediction tasks [11]. The major benefits
of using ensemble techniques are improved performance and robust-
ness to noise. However, it also comes with disadvantages such as
increased complexity, limited interpretability, and base model depen-
dency. Bayesian network models incorporate variables and their condi-
tional interdependencies through Directed Acyclic Graphs. A significant
limitation of Bayesian network models is their computational com-
plexity, particularly evident when handling large networks featuring
numerous variables. Additionally, these models rely on assumptions of
probabilistic independence among variables, and any deviation from
these assumptions may result in biased outcomes. Deep learning ap-
proaches have also emerged for the inference of GRNs. Mandal [12]
proposes a neural network-based model that uses neural networks to
reconstruct small-scale GRN from gene expression data. Another tech-
nique by MacLean [13] utilizes a convolutional neural network on pairs
of Arabidopsis TF and their respective targets, with microarray gene
expression serving as the feature set. Shrivastava’s [14] study centers
on accentuating the disparity between models for sparse graph recovery
and their practical applications in the inference of GRNs. The research
outlines potential avenues for reconstructing GRNs using sparse graph
recovery models. The key focus of the study revolves around catego-
rizing graph recovery models into four main types; regression, Markov
network, Graphical Lasso, and Directed Acyclic Graph-based models.
In neural network-based approaches, significant drawbacks include
complexity and a lack of interpretability.

2.6. Link prediction heuristics

Heuristics that use score functions to predict links come under this
class, examples include the number of common neighbors, Katz in-
dex [15,16]. The score generated by this heuristic relies on the number
of hops between a node and its neighboring nodes, resulting in various
variants. The simplest heuristics begin with a one-hop neighborhood,
exemplified by common neighbors and preferential attachment [17].
The Adamic-Adar index considers two hops [18], while some other
methods, such as Katz and PageRank [19], utilize the entire network for
scoring [20]. One of the earliest endeavors in the automatic learning of
predefined graph structural features was presented by Zhang and Chen
[21]. The success of the heuristic usually depends on the particular
network it is being used on [22].

2.7. GNN models

The majority of supervised GRN methods concentrate on pairwise
gene analysis, often losing sight of the broader network context. Some
research has highlighted the significance of local subgraphs in de-
coding valuable information related to the existence of links [23,24].
A major benefit of the GNN is its capability to model complex re-
lationships not only based on gene pairs but also based on graph
neighborhoods. In GNNs, it is possible to have both node attributes
and edge characteristics. Leveraging these attributes can enhance the
performance of the GNN, and the extent of improvement depends on
the specific dataset as factors like complexity, noise, and clear patterns
can influence the final result. Unlike tabular and image data, graph
data has interesting properties which are quite difficult to work with.
Graph structure is non-Euclidean and they lay differently in space. The
normal metrics for Euclidean space will not fare well in such datasets.
The GNN considers node attributes, edge attributes, and the global
arrangement of the graph to generate embeddings that characterize
the graph’s structure [25]. These node embeddings contain information
encompassing structural aspects and features derived from neighboring
nodes. The building block of the GNNs is the message-passing layers

which combine the node, edge, and adjacency information and convert
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it to node embeddings. Graph convolution is the technique used in
message-passing layers and has different variations [26]. Using message
passing a node aggregates neighbor node information and combines
that with its information. This is performed for every node to create
the node embeddings [27]. The number of layers in the GNN defines
the total count of message passing. Each message-passing layer can be
considered as a hop to the neighbors, the total number of message-
passing layers thus denotes the number of hops done from a node to its
neighborhood [27]. When it comes to score functions mentioned in link
prediction heuristics some perform better on certain networks than oth-
ers. So rather than learning predefined heuristics, it is often preferred
to learn the heuristic from the network directly. After considering the
target link, the adjacent local subgraph is leveraged for predicting
the link’s presence, contributing to an enhanced understanding of link
prediction mechanisms. In this way, the heuristics are determined
on the go. SEAL proposes a solution where small hops are used to
learn higher-order features utilizing the GNN [23]. GRGNN [24] is an
approach for constructing GRNs using GNNs. It is an extension of SEAL
and is applicable in both supervised and semi-supervised frameworks.
In this approach, GRN inference is framed as a graph classification task.
Positive and negative subgraphs are generated based on the presence
or absence of links with TFs. The node features are derived from both
gene expression and graph information. GRINCD [28], Q-GAT [29] are
some other works in this area related to GRN inference. GNN applied
to graph data involves three main types of predictions; node prediction,
link prediction, and graph prediction. Link prediction applications en-
compass recommender systems, knowledge graph completion [30], and
network reconstruction. GRN inference falls into the category of link
prediction.

3. Materials and methods

The GRN which is reconstructed from gene expression data can be
represented using 𝐺 = (𝑉 ,𝐸) where 𝑉 represents the vertices and
𝐸 represents the edges. 𝐺 is a directed graph where edge 𝑒𝑖𝑗 ∈ 𝐸,
represents the interaction between 𝑣𝑖 to 𝑣𝑗 which in turn represents
the regulatory link from gene 𝑔𝑖 to gene 𝑔𝑗 and 𝐸 ⊆ 𝑉 𝑥𝑉 .

3.1. Dataset

Microarray [31] keeps track of thousands of genes in parallel and
produces output raw files in image format which can then be trans-
formed into gene expression matrices after data pre-processing. In these
matrices the table rows represent samples and the column represents
the genes; the number in the cell characterizes the value of that
specific gene in the corresponding row sample. While static data has
no time component, temporal also known as time-series data have
interactions that vary across time. Additionally, there are other types of
data, such as knockout and knockdown. Knockout involves the removal
of a specific gene to gather insights into its function, whereas the
knockdown entails reducing the expression of a specific gene. In this
study, the input comprises datasets from the Dialogue for Reverse En-
gineering Assessments and Methods (DREAM), encompassing DREAM3,
DREAM4 [32–34] and DREAM5 [11] benchmark datasets. In this study,
we operate under the assumption that GRNs adhere to a scale-free
topology, as suggested by Ouma et al. [35]. The details of the datasets
are provided in Table 1. In this research, we focus on analyzing graph
structures that are both directed and homogeneous.

3.2. Preprocessing

The datasets of DREAM3 and DREAM4 challenges with a size of 10
were excluded from consideration due to their limited network size.
The study commences with the utilization of the DREAM3 size 50
dataset. Since GNNs necessitate a graph-based input, the initial step
4

involved distinguishing between node features and edge features to ℎ
construct the graph structure. As a result, four distinct graph variations
were created using the DREAM3 size 50 dataset. Utilizing graphs as
input allows for greater flexibility, as data elements can be represented
as nodes and edges with associated attributes. This approach enables
the incorporation of diverse information, including static values, time-
dependent sequences, and augmented values. Table 2 provides detailed
information about these four preprocessed graphs.

For DREAM3 and DREAM4 datasets time series data with 21 time
points is provided from which all four graph structures were made. For
DREAM5 datasets time series data is not available hence for DREAM5
only two graph structures were created.

Knockdown and Knockout data were used as edge features by
finding the difference between wild-type values and knockdown or
knockout values of a gene with one another.

To analyze the effect of adding predefined node features, four
augmented features were added namely degree, betweenness centrality,
clustering coefficient, and page rank. Degree denotes the number of
edges a node is connected to, betweenness centrality shows the influ-
ence a node has on the information flow of the graph, and clustering
coefficient is the ratio of actual links to the maximum link possible in
a neighborhood for a node. Page rank calculates the importance of a
node based on incoming links from other nodes. The influence of the
source node of a link also plays a role in determining a node’s Page
Rank score.

3.3. Pipeline

For transductive link prediction, auto-encoders have achieved great
success [26,36]. Here we have utilized an encoder–decoder architecture
for the prediction of GRN links. The major components of the pipeline
are as follows.

By using multi-layer convolutional networks, the encoder creates
node embeddings by processing the input graph. For the DREAM3
size 50 dataset, 23 convolutional layers were tested. Out of which
the top four performers were used on DREAM4 size 100 genes and
DREAM5 datasets. The convolution layers were chosen after careful
consideration of the challenges often encountered in gene regulatory
network inference. These challenges include discovering complex rela-
tionships, such as interactions between multiple genes, and the rapid
increase in the size and types (static, temporal) of gene expression
data. Additionally, the need to integrate diverse datasets, encompassing
genomic, transcriptomic, proteomic, and metabolomic data, poses a
significant hurdle [37,38]. The node embedding was done using, 2,
3, 4, and 5-layer combinations. Eight different activation functions
were tried out along with five different aggregation methods. For the
implementation of GNNs, we have utilized PyG [39].

The decoder calculates score predictions on edges using node em-
beddings, the predictions are made for both positive and negative
edges. The positive edges denote interactions between genes and the
negative edges denote no interaction. Three types of decoders were
used to obtain the link scores. They are dot product, neural network,
and cos decoder. Negative links are added to make it to binary classifi-
cation. The architecture used is provided in Fig. 2. In each layer, there
is both message passing from nearby nodes and its aggregation which
can be generally represented as Eq. (1) [41].

𝑎𝑔𝑔 = 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸(𝑘) ({ℎ(𝑘)𝑣 ,∀𝑣 ∈ 𝑁(𝑢)
})

(1)

or a node 𝑢, the 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸 function takes in the states of all
irect neighbors 𝑣 and aggregates them in a specific way. Here 𝑁(𝑢)
epresents the set of neighboring nodes of 𝑢. The layer index is denoted
, with 𝑘 ∈ {1,… , 𝐾} where 𝐾 denotes the total number of layers

in the GNN. The 𝑈𝑃𝐷𝐴𝑇𝐸 function then combines the aggregated
eighborhood information to the current state of node 𝑢, as shown
n Eq. (2) [41]. There are different variants of GNNs derived by
hanging the 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸 and 𝑈𝑃𝐷𝐴𝑇𝐸 functions.
(𝑘+1) (𝑘) ( (𝑘) )
𝑢 = 𝑈𝑃𝐷𝐴𝑇𝐸 ℎ𝑢 , 𝑎𝑔𝑔 (2)
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Table 1
Datasets used for the study, with the number of genes represented by node count, existing interactions represented by edge count, Type of
dataset: simulated/real, and Organism. Among the datasets DREAM3 size 50, DREAM4 size 100, and InSilico, E. coli, and S. cerevisiae datasets
from DREAM5 were used for the analysis.

Dataset name Network Node count Edge count Type Organism

DREAM3

Network 1

50

62

Sim E. coli, Yeast
Network 2 82
Network 3 77
Network 4 160
Network 5 173

Network 1

100

125

Sim E. coli, Yeast
Network 2 119
Network 3 166
Network 4 389
Network 5 551

DREAM4

Network 1

100

176

Sim E. coli and S. cerevisiae
Network 2 249
Network 3 195
Network 4 211
Network 5 193

DREAM5

Network 1 1643 4012 Sim E. coli, Yeast
Network 2 2810 518 Real S.aureus
Network 3 4511 2066 Real E. coli
Network 4 5950 3940 Real S. cerevisiae
Table 2
The table delineates four input graphs derived from datasets, offering details on the content, designated names, and specifics of node and edge
attribute inclusion for each.

Input graph Name used Information included

Basic graph basic_data_ Node features: node id, wild-type values. Edge
features: Knockout, Knockdown values

Basic graph + Time series
gene expression

basic_TS_data_ Node features: node id, wild-type values, Time
series Edge features: Knockout, Knockdown values

Basic graph + Augmented
node features

basic_aug_data_ Node features: node id, wild-type values,
Augmented node features Edge features: Knockout,
Knockdown values

Basic graph + Time series
gene expression + Augmented
node features

basic_TS_aug_data_ Node features: node id, wild-type values, Time
series, Augmented node features Edge features:
Knockout, Knockdown values
𝐿

w
e
c
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𝑦

w
d
d
u
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w
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The computational module of the general design pipeline for the
NN module consists of 3 core modules namely the propagation,

ampling, and pooling [40].

.3.1. Propagation operators
The propagation operator can be further divided into convolution

perator, and skip connection. There are two approaches namely spec-
ral and spatial under the convolution operator. In spectral approaches,
raphs are converted to spectral representations. In spectral methods,
pectral techniques are based on graph signal processing [42]. The
raph Fourier Transformation of signal 𝑠 is done before the convolution
peration, the resulting signal is then transformed back using inverse
raph Fourier Transform (Eq. (3)). In this case, the gene expression
alues present in the nodes act as signals. For 𝐺 = (𝑉 ,𝐸,𝑊 ) where 𝑉
enotes vertices, 𝐸 is the set of edges and 𝑊 ∈ 𝑅𝑛𝑥𝑛 is the adjacency
atrix of the graph. Here n represents the number of nodes in the graph

nd each node in turn corresponds to a gene [40].

F (𝐬) = 𝐔𝑇 𝐬 (3a)
−1(𝐬) = 𝐔𝐬 (3b)

n Eq. (3), 𝑈 is the matrix of eigenvectors of normalized graph Lapla-
ian 𝐿, 𝑈 ∈ 𝑅𝑛𝑥𝑛. Normalized graph Laplacian 𝐿 is given by Eq. (4)
40].

= 𝐼𝑛 −𝐷−1∕2𝑊𝐷−1∕2 (4)

here 𝐼𝑛 is the identity matrix and 𝐷 is the degree matrix. The Lapla-
ian 𝐿 is diagonalized by Fourier basis 𝑈 as represented by Eq. (5) [40].
5

b

= 𝑈𝛬𝑈𝑇 (5)

here 𝛬 = 𝑑𝑖𝑎𝑔([𝜆0, 𝜆1,… .𝜆𝑛−1]) ∈ 𝑅𝑛𝑥𝑛. 𝜆 represents real nonnegative
igenvalues identified as frequencies of the graph. On the basis of
onvolution theorem [43], the convolution operation is defined as
q. (6).

= 𝑔𝜃(𝐿)𝑥 = 𝑔𝜃
(

𝑈𝛬𝑈𝑇 ) 𝑥 = 𝑈𝑔𝜃(𝛬)𝑈𝑇 𝑥 (6)

here 𝑥 denotes the input signal, 𝑦 denotes the output signal and 𝑔𝜃
enotes the filter function applied in the Fourier domain. There are
ifferent spectral methods based on the filter variant it uses. ChebConv
ses polynomial filters, as defined in Eq. (7) [44].

𝜃(𝛬) =
𝑌−1
∑

𝑦=0
𝜃𝑦𝛬

𝑦 (7)

here 𝜃 is a vector of polynomial coefficients of 𝑌 th order polynomial.
ollowing this recursive computation of 𝑔𝜃(𝐿) represented as Cheby-
hev polynomial function is done to reduce the cost of filtering signal
. In the graph coarsening stage multilevel clustering algorithms are
sed to produce coarser graphs to view the data domain in a different
esolution. After coarsening the vertices are arranged using a balanced
inary tree. ChebNet [45], GCN [26], and AGCN [46] are some of the
ther methods coming under this category.

Basic spatial approaches such as GraphSAGE [47] use graph topol-
gy to define the convolutions. The major challenge of such approaches
s the varying neighborhood size and maintenance of local invariance
roperty. GraphSAGE samples and aggregates features to generate em-

eddings. There are two main parts, one is the embedding generation
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Fig. 2. General architecture of GNN-based graph autoencoder [36]. The GNN layer representation is adapted from [40]. *GNN Layer variants used are listed in supplementary
Table 1. The dashed boxes represent the modules that are present in only some GNN layer variants.
process and model parameter learning. The embedding generation pro-
cess assumes a trained model, where aggregator function parameters
are learned. There are K aggregator functions in total for K message
passing layers denoted by 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸𝑘 𝑘 ∈ {1,… , 𝐾} which pass
information from one layer to the next. As input graph 𝐺 and its
node features are provided, following which in a minibatch fashion
each node 𝑣 aggregates the representation of nodes in its immediate
neighborhood. ℎ𝑘−1𝑢 represents node 𝑢’s representation at layer 𝑘 − 1
and the aggregation on immediate neighborhood in ℎ𝑘−1𝑢 ,∀𝑢 ∈ 𝑁(𝑣)
to single vector ℎ𝑘−1𝑁(𝑣). The node’s current representation ℎ𝑘−1𝑢 is then
concatenated with ℎ𝑘−1𝑁(𝑣). This vector is then passed through a fully
connected layer, followed by 𝜎, a nonlinear activation function, which
gives representations for the next step. 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝑂𝑅 has multiple
suggested choices. When considering neighboring nodes, GraphSAGE
uses uniform sampling of a set with a consistent size of neighbors,
rather than a complete neighborhood to ensure a consistent com-
putational footprint. For learning the parameters of the GraphSAGE,
loss functions (Eq. (8)) based on the graph are used on the output
representations 𝑧𝑢,∀𝑢 ∈ 𝑉 . Parameters of the 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝑂𝑅 function
and weight matrices are also tuned the same way [47].

𝐿 (𝑧 ) = −𝑙𝑜𝑔(𝜎(𝑧𝑇 𝑧 )) −𝑄.𝐸 𝑙𝑜𝑔(𝜎(−𝑧𝑇 𝑧 )) (8)
6

𝐺 𝑢 𝑢 𝑣 𝑣𝑛∼𝑃𝑛(𝑣) 𝑢 𝑣𝑛
where 𝑣 denotes the neighbor node of 𝑢 that gets selected under
the fixed size criteria mentioned above, 𝑃𝑛 is the negative sampling
distribution, and 𝑄, is the number of negative samples.

Attention-based spatial methods differentiate the importance of
neighboring nodes through varying weights. An example is the famous
GAT (Graph Attention Network) which applies an attention mechanism
to propagation step [48]. GAT performs self-attention on the vertices
and computes the attention coefficients (Eq. (9)).

𝑒𝑖𝑗 = 𝑎(𝑊 ℎ𝑖,𝑊 ℎ𝑗 ) (9)

where 𝑎 ∶ 𝑅𝐹 𝑘x𝑅𝐹 𝑘
→ 𝑅 is the shared attentional mechanism. 𝐹 𝑘

denotes the cardinality of node features at layer 𝑘. 𝑒𝑖𝑗 shows the
importance of the node 𝑗’s features to node 𝑖. This way every node
shares information with one another. For the graph scenario, 𝑒𝑖𝑗 is
computed only for 𝑗 ∈ 𝑁𝑖, first-order neighbors. The coefficients are
normalized using Eq. (10) [48] to make them comparable across nodes.

𝛼𝑖𝑗 = sof tmax𝑗
(

𝑒𝑖𝑗
)

=
exp

(

𝑒𝑖𝑗
)

∑

𝑘∈𝑖
exp

(

𝑒𝑖𝑘
) (10)

A single-layer feedforward neural network using the weight vector
followed by LeakyReLU nonlinearity is used for 𝑎. The fully expanded
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equation for coefficient computation can be written as Eq. (11) [48].

𝛼𝑖𝑗 =
exp

(

LeakyReLU
(

𝐚𝑇
[

𝐖ℎ𝑖 ∥ 𝐖ℎ𝑗
]))

∑

𝑘∈𝑖
exp

(

LeakyReLU
(

𝐚𝑇
[

𝐖ℎ𝑖 ∥ 𝐖ℎ𝑘
])) (11)

where 𝑇 stands for transposition and ∥ for concatenation operator. The
𝛼𝑖𝑗 is used for the computation of output features of nodes using a
linear combination of input features. The work is also extended using
a multi-head attention mechanism.

Skip connections were used as they improved the performance on
deeper models where noise propagation and over-smoothing occur.

3.3.2. Sampling modules
For each node, an aggregation operation is performed to aggregate

messages from neighbors, but as the number of GNN layers increases
the number of neighbors also increases exponentially, which also causes
issues in storing neighborhood information. Node sampling reduces
neighborhood node size as in GraphSAGE [47].

3.3.3. Pooling modules
Convolutional layers are typically followed by pooling layers to

extract higher-level, abstract features. There are two categories un-
der it namely direct and hierarchical [40]. Direct pooling modules
learn graph-level representations directly from nodes using various
node selection strategies, GraphConv [49] is an example. Hierarchical
pooling modules used in ChebConv [44] and LEConv [50] follow
a layer-by-layer hierarchical pattern to learn graph representations,
often employing graph coarsening algorithms to merge nodes based on
spectral clustering techniques.

3.3.4. Other categories
Apart from these some variants of GNNs are often applied on

special networks. Hypergraph Convolution [51] is one such method.
Unlike regular graphs, Hypergraphs represented by 𝐺 = (𝑉 ,𝐸,𝑊𝑒)
can have edges that connect two or more vertices. The edges are
assigned a weight 𝑤 ∈ 𝑊𝑒. HGNN [52] is a technique using Hypergraph
convolution to process higher-order interaction between nodes.

Hypergraph 𝐺 is represented by an incidence matrix defined as
𝐻 ∈ 𝑅|𝑉 |𝑥|𝐸|. If vertex 𝑣𝑖 is connected by 𝑒 ∈ 𝐸, 𝐻𝑖𝑒 = 1, else 0.
Hyperconvolution is defined as

𝑥(𝑘+1)𝑖 = 𝜎

(

|𝑉 |

∑

𝑗=1

|𝐸|

∑

𝑒=1
𝐻𝑖𝑒𝐻𝑗𝑒𝑊𝑒𝑥

(𝑘)
𝑗 𝐏

)

(12)

where 𝑥(𝑘)𝑖 denotes embedding of 𝑖th node at 𝑘th layer, 𝜎 represents
a sigmoid function and 𝑃 is the weight matrix between layers [52].
Eq. (12) can be represented in matrix form as

𝐗(𝑘+1) = 𝜎
(

𝐇𝐖𝐇T𝐗(𝑘)𝐏
)

(13)

To prevent the risk of exploding/vanishing gradients symmetric nor-
malization or row-normalization is performed. The attention learning
module is also applied to enrich the incidence matrix 𝐻 .

There are works focussed on graphs with signed edges, SGCN [53]
uses balance theory to predict links between positive and negative
edges. Zhou et al. [40] provides a comprehensive overview of GNNs,
including their design pipeline and various modules.

3.4. GNN design space for GRN inference

A total of 1,274,796 different designs were constructed over 19
network datasets from DREAM3, DREAM4, and DREAM5 challenges.
In this work, a good number of architectures are covered to shed more
light on the design space alongside the design chosen to discover a
successful GNN model for GRN inference. The work aims to provide
a quick look into the combinations that help in making good design
choices. The train, validation, and test splits were in the ratio of 50%,
7

20%, and 30%.
A comprehensive set of experiments was conducted using a total of
23 types of convolutional layers, 8 activation functions, 5 aggregation
operators, and 3 decoder types, with a fixed layer count of 2, on the
DREAM3 size 50 dataset. Subsequently, based on the results analysis,
a refined set comprising 4 convolutional layer types, 3 activation
functions, 2 aggregators, and 2 decoders was applied to the DREAM4
and DREAM5 datasets.

To gauge the impact of dropouts, rates of 0.2 and 0.5 were employed
on the DREAM4 and DREAM5 datasets. An additional analysis involved
skip connections, linking the previous layer to the subsequent layer.
The number of layers utilized for DREAM4, and DREAM5 datasets
varied between 2 and 5, with a deliberate limitation to prevent over-
smoothing effects. The study utilized the Adam optimizer, employed
BCEWithLogitsLoss as the loss function, and set the learning rate to
0.01. As the dataset size was not affecting computation batching was
not performed.

The design dimensions applied for each dataset are provided in the
supplementary Table 1.

3.5. Performance metrics

The edges of the constructed dataset are compared with the ground
truth to evaluate the model. A Receiver Operator Characteristic curve
(ROC) illustrates the relationship between the True Positive Rate (also
known as recall) and False Positive Rate (FPR) across different thresh-
old values, whereas a Precision-Recall curve (PRC) depicts the trade-off
between precision and recall for varying threshold values. The AUROC
and AUPR values correspond to the Area under ROC and the Area
under PRC. The calculation of Recall, FPR, and Precision are shown
in Eq. (14).

Recall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(14a)

FPR = 𝐹𝑃
𝐹𝑃 + 𝑇𝑁

(14b)

Precision = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(14c)

where TP is the true positive, TN is the true negative, FP is the false
positive and FN is the false negative. True Positives (TP) represent
the edges that originally existed in the network and were correctly
predicted by the model. True Negatives (TN) correspond to edges that
never existed in the original network and are correctly absent in our
predicted network. False Positives (FP) are edges that did not exist in
the real network but were erroneously predicted by our model. False
Negatives (FN) are edges present in the real network but not identified
by our model. Recall and precision often exhibit an inverse relationship,
higher recall typically results in lower precision and a higher FPR, while
higher precision generally means lower recall but a lower FPR. These
trade-offs can be visualized with AUROC and AUPR curves, which
summarize performance across different thresholds. Higher AUPR in-
dicates a model’s effectiveness in capturing positive interactions, while
higher AUROC reflects better overall discrimination between positive
and negative interactions.

4. Results and discussion

4.1. DREAM3 datasets

The DREAM3 datasets consisted of five size 50 gene network ex-
pression datasets. Size 50 gene networks were utilized to shortlist the
convolution layers from 23 to 4. The AUROC and AUPR details of
the size 50 gene set are provided in Fig. 3. In the DREAM3 size 50
dataset, a total of 11,041 combinations were tested for each network.
The results of this experiment served as a primary filter for subsequent
stages of the study. Each combination was run 10 times, and the
results were averaged. Each design dimension value was then averaged

over the rest of the dimensions to evaluate the overall performance.

Domenico Gatti
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Fig. 3. AUROC and AUPR results in DREAM3 size 50 dataset for design dimensions convolution layers, graph data, decoder, aggregator, and activation function. auc_mean denotes
the mean AUROC value over 10 runs, and AUPR_mean denotes the mean AUPR over 10 runs.
Among the 23 convolution layer variants, four of them stood out and
were chosen: ChebConv [44], Hypergraph [51], ClusterGCN [54] and
SSGConv [55] convolutional layers. Among the graph structures used,
those involving time series data seemed to perform lower than the sta-
tionary ones. Hence, for further experiments, only static datasets were
used. However, for evaluating the current model against state-of-the-art
methods, time series datasets are incorporated. Among decoders, dot
8

product and cosine scores were retained for the next experiment. The
neural network-based decoder also shows promising results. Among
aggregators, 𝑎𝑑𝑑 and 𝑠𝑢𝑚 perform slightly better than the others.

The performance of the activation function varied based on the
convolution layer used alongside. The activation functions 𝑆𝑖𝐿𝑈 , 𝑡𝑎𝑛ℎ,
and 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 were selected due to their improved performance when
paired with the ChebConv and Hypergraph convolution layers.

Domenico Gatti
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Table 3
Comparison of the proposed model against existing techniques using AUROC and AUPR scores in the DREAM4 dataset. GB — Gradient Boost, AB — AdaBoost CC — ChebConv,
HG — Hypergraph. The performance measures of baseline methods are collected from GRADIS [56] and GreyNet papers [7].

Method Net 1 Net 2 Net 3 Net 4 Net 5

AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

GNN(CC) 0.589 0.618 0.638 0.654 0.56 0.577 0.617 0.621 0.589 0.613
GNN(HG) 0.658 0.661 0.729 0.745 0.597 0.613 0.553 0.599 0.662 0.655
GreyNet 0.822 0.258 0.725 0.16 0.771 0.267 0.731 0.205 0.789 0.221
BTNET(GB) 0.776 0.186 0.694 0.113 0.759 0.235 0.723 0.143 0.758 0.165
BTNET(AB) 0.776 0.207 0.699 0.116 0.77 0.224 0.74 0.158 0.78 0.169
SWING-RF 0.793 0.192 0.723 0.116 0.759 0.214 0.742 0.193 0.775 0.16
SWING-Dionesus 0.772 0.124 0.7 0.095 0.709 0.194 0.727 0.187 0.771 0.143
BiXGBoost 0.744 0.138 0.682 0.075 0.716 0.119 0.702 0.106 0.728 0.09
GENIE3-time 0.79 0.167 0.711 0.103 0.767 0.215 0.742 0.152 0.786 0.146
Jump3 0.724 0.099 0.623 0.057 0.696 0.077 0.662 0.072 0.696 0.074
TIGRESS 0.715 0.054 0.532 0.037 0.483 0.018 0.467 0.018 0.521 0.022
Table 4
Comparison of the proposed model against existing techniques using AUROC and AUPR scores in the DREAM5 dataset. WOC — Wisdom of
crowds, CC — ChebConv, HG — Hypergraph. The performance measures of baseline methods are collected from GRADIS [56] and GRGNN
[24] papers.

TIGRESS Mrnet GENIE3 WOC GRGNN GRADIS GNN(CC) GNN(HG)

InSilico 0.74 0.74 0.82 0.81 – 0.85 0.938 0.895
E. coli 0.59 0.59 0.69 0.69 0.91 0.94 0.917 0.966
S. cerevisiae 0.52 0.52 0.54 0.54 0.90 0.96 0.968 0.98
4.2. DREAM4 and DREAM5 datasets

For DREAM4 and DREAM5, two additional design choices on the
number of layers and the number of epochs were added. In graph
data, as depicted in Figs. 4 and 7, augmented data has slightly better
performance than the basic model. Among decoders, the dot product
decoder outperforms the cos decoder, while the aggregator has com-
parable results. Increasing the number of layers shows an increase in
the performance of the Hypergraph but causes an eventual decrease
for the other convolution layers. The other three convolution layers
seem to perform best with three layers. As indicated in Figs. 5, 6,
there is a minor improvement in performance with the initial increase
in epoch count, which then soon reaches saturation. The 𝑡𝑎𝑛ℎ and
𝑖𝑔𝑚𝑜𝑖𝑑 functions achieve better results for both DREAM4 and DREAM5
atasets.

Based on the results of DREAM4 and DREAM5 datasets, Cheb-
onv and Hypergraph convolution layers performed the best and were

urther experimented on to understand the effect of skip connection,
ropout, and hidden dimension choices. The results are provided in
upplementary Figs. 1 and 2. For the DREAM4 challenge, adding skip
onnection, dropout, and increasing hidden dimension is not favor-
ble when it comes to the ChebConv network. In Hypergraph, skip
onnection and increasing the hidden dimension show positive results.
ropout does not increase the performance in the Hypergraph from the
REAM4 challenge.

On the DREAM5 challenge dataset, skip connection improves the
erformance of ChebConv but does not improve the performance of
ypergraph. For ChebConv, dropouts decrease the performance in

he DREAM5 challenge and do not show any notable difference for
ypergraph Convolution. Increasing the hidden dimension positively

mproves the results of ChebConv layers and slightly improves the
erformance of Hypergraph.

Skip connection has a mixed result; based on the dataset and con-
olution layer type used, the performance improves or drops. Dropouts
re typically introduced to enhance the robustness and generalizability
f features while preventing overfitting. In this case, dropouts seem to
ave low performance as the number of nodes is not that high, affecting
he information passing. Hidden dimension variation seems to have
ore impact on Hypergraphs than ChebConv in DREAM4 datasets, and

n larger DREAM5 datasets, it shows performance improvement in both
9

onvolution layer types.
4.3. Comparison with other related work

4.3.1. DREAM4
The comparison of the two best-performing models in GNN with

state-of-the-art techniques is provided in Table 3.
In DREAM4 challenge a significant improvement can be seen in the

AUPR scores using GNN methods. However, the AUROC values do not
show the same improvement. GreyNet shows higher accuracy values in
3 networks compared to that of the GNN-based approach.

4.3.2. DREAM5
The use of both the ChebConv and the Hypergraph approaches on

InSilico and real networks of E. coli and S.cerevisiae show significant
improvement (Figs. 4 and 7). The AUROC results for the InSilico and
real datasets of the DREAM5 challenge are compared against other
works and results are as shown in Table 4. ChebConv utilizes techniques
from spectral graph theory, particularly the graph Laplacian matrix, to
define graph convolutions. Chebyshev polynomials are used to approx-
imate localized spectral filters, to capture local graph features that are
valuable for link prediction tasks. This approximation makes it well-
suited for practical applications, including those involving large and
deep networks. This adaptability contributes to its effectiveness with
both simulated and real datasets. Hypergraphs extend the capabilities
of traditional graphs by accommodating more intricate relationships
among nodes. Hyperedges can connect multiple nodes simultaneously,
providing greater expressiveness for modeling complex data relation-
ships. These convolutional layers excel in capturing higher-order de-
pendencies among nodes, which proves valuable when relationships
involve multiple interconnected nodes. GRNs are sparse graphs due to
the low count of edges against the non-edges. Hypergraphs demon-
strate proficiency in managing sparse data by effectively capturing
higher-order relationships [51].

In social network settings and e-commerce recommendation sys-
tems, hypergraphs have proven effective in addressing challenges stem-
ming from sparse network data [57,58]. This can be attributed to the
superior performance observed in GRNs when employing hypergraph
convolution layers. In semi-supervised learning scenarios, Hypergraph
convolutional layers leverage both node features and hyperedge in-
formation to make predictions. Compared to GRGNN, a GNN-based
model, the proposed technique demonstrates superior results. However,
it is worth noting that GRGNN was designed for inductive inference of
GRNs. Nonetheless, it serves as a valuable comparison technique, given

that both approaches utilize GNNs to address the inference problem.

Domenico Gatti
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Fig. 4. AUROC results in DREAM4 size 100 dataset and DREAM5 dataset for design dimensions graph data, decoder, aggregator, and number of layers. auc_mean denotes the
mean AUROC value over 10 runs, setting represents the values for the parameter under consideration.
5. Conclusion

GRN inference is an important research area that holds great hopes
for understanding the regular workings of the human body and dis-
ease pathology. GRNs can uncover disease mechanisms, and shortlist
disease-causing genes by highlighting their regulatory relations with
other genes [59]. We leveraged the DREAM3, DREAM4, and DREAM5
gene expression datasets to derive our findings and compared them
with state-of-the-art techniques. Notably, our analysis revealed that
GNN methods outperformed other approaches in terms of performance
scores.

Here are the conclusions drawn from the experiments above:

1. The convolution operator is a crucial component of GNNs, and
the choices made in selecting the appropriate operator can sig-
nificantly impact the results depending on the specific task at
hand. In this research, two specific convolution layers, namely
ChebConv and Hypergraph, demonstrated outstanding perfor-
mance in the context of GRN inference.
10
2. Eliminating features through dropout does not seem to provide
significant benefits. This might be because GNNs are already
robust to noise and outliers.

3. Regarding aggregation methods based on the results of the
DREAM3 challenge, 𝑎𝑑𝑑 and 𝑠𝑢𝑚 shows promise.

4. The impact of skip connections varies depending on the dataset
used, with considerable performance gains observed for Cheb-
Conv on the DREAM5 dataset. Skip connections are most ef-
fective in deep networks with many layers; however, in shal-
low networks, their impact on model performance may be less
significant.

5. Increasing the number of layers has a positive impact on Hy-
pergraph and ChebConv models but negatively affects SSG-
Conv, ClusterGCN, and ChebConv models, likely due to over-
smoothing issues and overfitting.

6. Increasing the number of epochs initially improves performance
but soon reaches saturation, indicating the possibility of overfit-
ting.

Domenico Gatti
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Fig. 5. AUROC results in DREAM4 size 100 dataset and DREAM5 dataset for design dimensions number of epochs, activation function. auc_mean denotes the mean AUROC value
over 10 runs, setting represents the values for the parameter under consideration.
Fig. 6. AUPR results in DREAM4 size 100 dataset and DREAM5 dataset for design dimensions number of epochs, activation function. aupr_mean denotes the mean AUPR value
over 10 runs, setting represents the values for the parameter under consideration.
7. No single activation function consistently outperformed oth-
ers in DREAM3 size 50 datasets when averaged across various
parameters. The ideal choice of activation function for opti-
mal performance depends on the specific GNN layer and the
characteristics of the dataset in question.

8. The dot product decoder consistently outperforms other de-
coders, while the neural network-based decoder warrants further
investigation.
11
9. Incorporating time series information into graph data gener-
ally reduces overall GNN performance, suggesting the need for
alternative representations.

10. The model shows good results in DREAM5, which is noteworthy
as it includes two real gene expression datasets.

In addition to these observations, our study did not explore learning
configuration parameters, Batch Normalization, interlayer designs, or
various skip connection variants. Future research could investigate the

Domenico Gatti
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Fig. 7. AUPR results in DREAM4 size 100 dataset and DREAM5 dataset for design dimensions graph data, decoder, aggregator, and number of layers. aupr_mean denotes the
mean AUPR value over 10 runs, setting represents the values for the parameter under consideration.
impact of these dimensions and explore alternative decoder variants
and graph structures to represent biological data better.
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