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A B S T R A C T   

Metabolism governs cell performance in biomanufacturing, as it fuels growth and productivity. However, even in 
well-controlled culture systems, metabolism is dynamic, with shifting objectives and resources, thus limiting the 
predictive capability of mechanistic models for process design and optimization. Here, we present Cellular 
Objectives and State Modulation In bioreaCtors (COSMIC)-dFBA, a hybrid multi-scale modeling paradigm that 
accurately predicts cell density, antibody titer, and bioreactor metabolite concentration profiles. Using machine- 
learning, COSMIC-dFBA decomposes the instantaneous metabolite uptake and secretion rates in a bioreactor into 
weighted contributions from each cell state (growth or antibody-producing state) and integrates these with a 
genome-scale metabolic model. A major strength of COSMIC-dFBA is that it can be parameterized with only 
metabolite concentrations from spent media, although constraining the metabolic model with other omics data 
can further improve its capabilities. Using COSMIC-dFBA, we can predict the final cell density and antibody titer 
to within 10% of the measured data, and compared to a standard dFBA model, we found the framework showed a 
90% and 72% improvement in cell density and antibody titer prediction, respectively. Thus, we demonstrate our 
hybrid modeling framework effectively captures cellular metabolism and expands the applicability of dFBA to 
model the dynamic conditions in a bioreactor.   

1. Introduction 

Maximizing recombinant protein titer in a pharmaceutical bio
process can be facilitated by optimizing nutrient feeding. Optimal con
ditions are commonly identified using time and resource-intensive 
design of experiments (DOE) strategies (Kasemiire et al., 2021). Models 
built on process data can help predict the trajectory of cellular states and 
control the process environment (Sidoli et al., 2004). Predictive models 
have previously leveraged empirical Monod-based equations to compute 
growth rates based on the extracellular concentrations of limiting nu
trients (Ben Yahia et al., 2021; Galleguillos et al., 2017). The uptake and 
secretion rates for non-limiting nutrients are described by their relative 
uptake/secretion rates and/or kinetic rate laws defined by concentra
tions (López-Meza et al., 2016). However, nutrient depletion and toxic 
metabolite accumulation lead to metabolic shifts that cause uptake and 

secretion rates relative to the limiting nutrient to change during the 
bioprocess (Sunley et al., 2008; Templeton et al., 2013). This limitation 
motivates the inclusion of descriptive and mechanistic models of cellular 
metabolism in dynamic bioreactor models. 

Genome-scale metabolic models are comprehensive collections of all 
metabolic pathways for an organism and are valuable for predicting 
product yields when nutrient uptake rates are specified. Metabolic flux 
through the entire network can be predicted using constraint-based 
modeling, such as flux balance analysis (Orth et al., 2010), which as
sumes that resource allocation in a cell aims to fulfill specific cellular 
objectives. This capability is leveraged for dynamic flux balance analysis 
(dFBA) (Mahadevan et al., 2002) and uses bioreactor substrate con
centrations to determine nutrient uptake by the metabolic model. Fluxes 
are then predicted with the metabolic model to update metabolite 
concentrations in the bioreactor. Overall, this framework embeds the 
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FBA problem within a system of ODEs to predict metabolic and cellular 
dynamics in the reactor. 

While dFBA is structurally simple, it has three disadvantages that 
limit its application to mammalian bioprocessing. First, cellular meta
bolism is dynamic and therefore, the metabolic model must be tailored 
to be consistent with the extracellular environment. Otherwise, the full 
genome-scale model over-predicts intracellular fluxes as it affords the 
use of conditionally inactivated pathways (Jerby et al., 2010). Second, 
changes in extracellular environments cause cells to change the abun
dance of transporter proteins, which further changes kinetic parameters 
governing nutrient uptake rates (Laakso et al., 2011). Third, cells exhibit 
metabolic shifts arising from metabolite accumulation, such as lactate, 

wherein lactate production switches to lactate consumption during the 
bioprocess (Torres et al., 2018). This is frequently seen in fed-batch 
cultures with CHO cells and must be conditionally integrated into 
existing bioprocess models (Nolan and Lee, 2011). 

Capturing metabolic shifts requires us to first characterize them. 
Some algorithms rely on visual inspection (Dean and Reddy, 2013) or 
piecewise linear regression (Ben Yahia et al., 2017) to identify different 
process phases. However, these methods suffer from the drawback that 
the model may reflect a single dataset or growth condition. Thus, they 
may not generalize to other conditions prevalent in the bioreactor or 
states of a bioprocess. Finally, predicting product fluxes requires us to 
know a cell’s objectives for a given cellular state. Objective functions, 

Fig. 1A. Overall workflow showing the pre-requisites and simulation approach used by COSMIC-dFBA. COSMIC-dFBA predicts metabolite concentration, cell 
density, and antibody titer profiles by solving a system of ordinary differential equations in which the rate of metabolite uptake/secretion is determined using a 
metabolic model. In order to accomplish this, three inputs must be specified. The first input is the state-specific metabolic model, which is derived from a genome- 
scale metabolic model by overlaying different types of -omics data (metabolomic, transcriptomic, or fluxomic data). The second requirement is the knowledge of 
state-specific cellular objectives encoding the allocation of nutrients into various products, which is inferred from metabolite uptake and secretion rates computed 
using spent media analysis. The third requirement is a cell state distribution predictor, a machine learning model that predicts the cell state based on prevailing 
conditions to adjust nutrient uptake by the metabolic model. These three prerequisites feed into the dFBA-CORE sub-routine, which computes instantaneous uptake 
and secretion rates as depicted in Fig. 1B. 
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such as growth rate maximization, can be reliably applied to quantify 
metabolism in prokaryotes; however, these objectives have limited 
relevance to mammalian cells, since they only partially characterize the 
growth phase (Savinell and Palsson, 1992). To model the non-growing 
states, alternative objective functions must be explored (Garcia San
chez and Torres Saez, 2014). More recently, parsimonious nutrient up
take was proposed as an objective (Chen et al., 2019), but it does not 
capture the variation in amino acid allocation towards different re
combinant proteins. Therefore, there is a need for a comprehensive 
framework that correctly models the biological characteristics of the 
cells in the bioreactor with high fidelity by addressing the changes in cell 
states arising from constantly changing conditions in an industrial 
bioprocess. 

Here we present Cellular Objectives and State Modulation In bio
reaCtors (COSMIC)-dFBA, a multi-scale modeling framework for pre
dicting concentration profiles of glucose, metabolic byproducts, 
antibody, amino acids, and cell density in a perfusion bioprocess 
(Fig. 1A, 1B). As with standard dFBA, COSMIC-dFBA predicts concen
tration profiles of metabolites by solving a system of ODE equations in 
which the uptake rates of metabolites are determined by kinetic rate 
laws and product secretion rates are predicted by the metabolic model. 
To compute fluxes using the metabolic model, COSMIC-dFBA first de
termines the number of cell states by inspecting uptake and production 
fluxes between various sampling intervals. Using these data, we then 
compute the fraction of cells in each phase, which provides a measure of 
state shift. We then identify the metabolites that show a significant 
difference in concentration between the identified states and train the 
cell state distribution predictor, a statistical model to predict state shift 
based on the prevailing bioreactor conditions. Using uptake and secre
tion rates inferred from spent media analysis, we then generate a priority 
list for metabolic tasks to determine the order of resource allocation of 
various cellular objectives for each identified state. A parameterized 
kinetic rate law is used to constrain nutrient uptake in each identified 
state. This information is then used to solve the metabolic model and 
predict the net uptake and secretion rates of all tracked metabolites. This 
framework accurately predicts concentration profiles and antibody ti
ters in a diverse range of bioreactor conditions including glucose, amino 

acid, and oxygen depleted media. Therefore, this framework is a valu
able resource for bioprocess characterization and optimization. 

2. Results 

2.1. The COSMIC-dFBA framework 

Cellular Objectives and State Modulation In bioreaCtors (COSMIC- 
dFBA) is a multi-scale hybrid dynamic flux balance analysis framework 
that predicts total cell density, antibody titer, and metabolite concen
tration profiles throughout a bioprocess. Fig. 1A, 1B shows the sche
matic representation of COSMIC-dFBA along with the pre-requisites and 
dynamic inputs required for execution. We define a cell state (hereafter 
referred to as “state”) as the aggregate of nutrient uptake, afforded 
pathways for metabolism, and flux distribution into various products. 
The conceptual advancement by COSMIC-dFBA is the seamless transi
tion between states in a dynamic bioprocess without the need for 
condition-specific parametrization of state transition. Because FBA is 
only applicable at metabolic steady-state, intracellular flux distributions 
are constrained via nutrient uptake rates in traditional dFBA. COSMIC- 
dFBA overcomes this limitation by assuming that overall metabolism 
in the reactor is a weighted average of metabolism of cells in various 
states. The cell state at any time point is predicted by the Cell State 
Distribution Predictor model based on instantaneous bioreactor condi
tions and feature metabolite concentrations using a supervised machine- 
learning classifier (See Methods section 4.4). The four prerequisites for 
executing COSMIC-dFBA include (i) state-specific metabolic models that 
contain limits on nutrient uptake and pathways available for meta
bolism, (ii) state-specific uptake kinetics that reflect the effects of 
changing gene expression on nutrient uptake in different cell states, (iii) 
state-specific metabolic tasks that encode the resource allocation in each 
cell state, and (iv) a machine learning model to predict population dis
tribution among cell states based on the prevailing conditions in the 
bioreactor. The procedure for preparing these prerequisites is described 
in the Supplementary Methods. 

COSMIC-dFBA simulates bioreactor metabolite and product con
centrations by solving a system of ODEs describing the feeding, removal, 

Fig. 1B. Computing instantaneous metabolic fluxes in COSMIC-dFBA using the dFBA-CORE sub-routine. The system of ODEs solved to update reactor metabolite 
concentrations requires uptake and secretion rates that are computed as a weighted average of metabolism from all possible cell states (growth and production states, 
in this case). The weights for the contributions are computed using the cell state distribution predictor. The fluxes corresponding to each cell state are computed by 
solving a multi-level flux balance analysis problem using the state-specific metabolic model, provided state-specific uptake rates (determined by reactor metabolite 
concentrations using a Monod-like equation), and specified cellular objectives. The net result is a set of flux distributions corresponding to various cell states. These 
flux distributions are averaged based on weights computed by the cell state distribution predictor to obtain the net uptake and secretion rates. 
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and metabolism of nutrients and products in the bioreactor (Fig. 1B). At 
each time point, the uptake rates and secretion rates are computed in 
three steps. First, uptake rates for all nutrients are calculated using 
computed kinetic rate laws for each state. Next, the computed nutrient 
uptake rates are used to constrain the respective state-specific metabolic 
models. The state-specific secretion rates are computed by solving the 
state-specific metabolic model using a multi-objective FBA. Finally, the 
average uptake and secretion rates are computed by weighting the 
computed state-specific uptake and secretion rates by the fraction of 
cells in each state, predicted by the cell state distribution predictor 
model based on prevalent bioreactor condition. These overall rates are 
then used to update the nutrient concentrations in the bioreactor. 

2.2. Cellular objectives are cell state-specific 

A PCA of computed fluxes revealed two distinct cell states (state 1 
and state 2) representing metabolism before day 3 and after day 10 (see 
Supplementary Results). We analyzed the computed state-specific up
take and secretion rates (see Methods section 4.3 and Supplementary 
methods section 1) in the context of the iCHO1766 metabolic model to 
quantify the changes in resource allocation associated with state shift. 
We first computed the task efficiencies (defined as the ratio of measured 
flux to maximum flux predicted by the metabolic model) for each 
secreted product and assigned priorities to each metabolic task (see 
Supplementary Methods). Fig. 2 shows the task efficiency averaged 
across all reactor conditions for all measured metabolic byproducts in 
both states. We found that biomass formation and lactate secretion were 
the top two metabolic tasks in state 1, accounting for 88% of the 
consumed carbon and 40% of the consumed nitrogen, as quantified by 
FBA. Based on this, we call state 1 the “growth state”. The primary 
metabolic task in the production phase was antibody production, ac
counting for 73% of the consumed nitrogen. Based on this, we call state 
2 the “production state”. Although the total cell density did not change 
for cells in the production state, the cell size steadily increased, 

suggesting that biomass precursors were being synthesized and accu
mulated. These findings demonstrate that metabolism qualitatively 
changes upon state shift in the bioprocess and motivates the need to 
incorporate approaches to account for cell state shifts and changing 
metabolic objectives in a dFBA simulation. 

2.3. The cell state distribution predictor captures phase-shifts driven by 
nutrient and oxygen depletion 

To ensure that cell state is properly predicted by changes in reactor 
conditions when simulating a bioprocess, we developed a state classi
fication model and trained it through a three-step workflow (Fig. 3). The 
first step is to identify metabolites whose depletion correlates with the 
observed state shift. To accomplish this, we label each data measure
ment as either growth state, production state, or mixed state based on 
the state progression parameter computed concurrently with uptake and 
secretion rates (see Supplementary Methods section 1). The state pro
gression parameter, f , represents the distribution of cell populations in 
each cell state with f = 0 indicating that all cells are in the growth state 
and f = 1 indicating that all cells are in the production state. Metabolite 
concentrations at time points with f < 0.2 (less than 20% of the cells in 
the production state) were considered to represent the growth state and 
at time points with f > 0.8 (more than 80% of the cells in the production 
state) were considered to represent the production state. We excluded 
metabolites whose media concentration increased over time as meta
bolic byproducts were constantly cleared from the bioreactor by perfu
sion and retained only those metabolites whose media concentration 
decreases by at least 50%. For the cell line and process considered here, 
the full list of features includes glucose, asparagine, and glutamine as the 
potential metabolite candidates in addition to oxygen level and biore
actor temperature (Supplementary Fig. S2). 

The second step in developing the phase classifier model is dimen
sional reduction with Linear Discriminant Analysis (LDA) to project the 
features to a lower dimensional space, such that projected features are 

Fig. 2. Resource allocation towards various metabolic tasks in the growth and production states. Cells were predominantly in the growth state before day 3 and 
transitioned to the production state between day 3 and day 10, and remained in the production state beyond day 10 as inferred from overall metabolism within the 
bioreactor. Most of the cellular resources were channeled into biomass formation in the growth state and towards antibody production in the production state. 
Lactate was produced from glucose via glycolysis and from asparagine and glutamine via the anaplerotic pathways. Additional carbons were channeled into syn
thesizing biomass precursors in the production state, which were accumulated intracellularly. A similar fraction of consumed nitrogen was channeled into ammonia 
generation (via glutaminolysis and asparagine degradation) and alanine production via transamination in both states. Glycine production was significantly reduced 
in the production state. 
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correctly classified into the growth and production state. For this, we 
consider features corresponding to growth state and production states (f 
< 0.2 or f > 0.8) and ignore features corresponding to the mixed state. In 
the final step, we fit a logistic curve to model the relationship between 
projected features from all three states and the predicted state pro
gression parameter. The resulting machine learning model intakes the 
prevailing bioreactor features and predicts cell state to determine the net 
uptake and secretion rates in the reactor (See Fig. 1B). 

The cell state distribution predictor model correctly predicted the 
state for 94 of 130 time points across all bioreactor growth conditions 
with an accuracy of 0.1 (difference between predicted and computed 
state is less than 0.1) and 118 of 130 time points with an accuracy of 0.2 
(Fig. 4). The model had a specificity of 0.78 and a sensitivity of 0.681. 
The F1-score was 0.731 and Matthews’ correlation coefficient was 
0.454. In contrast, models based on a random classifier (cell state dis
tribution assumed to be a random number between 0 and 1) had a 
Matthews’ correlation coefficient of − 0.72, indicating that the state 
prediction by the trained model significantly outperformed random 
chance (permutation test, p-value <10− 6). The model correctly identi
fied state shifts associated with the depletion of asparagine, glutamine, 
and glucose, even in growth conditions with altered amino acid and 
glucose availability. In cases with altered oxygen availability, the model 
correctly identified the cell state for all data except those between days 
6–8. This was because the cells had already transitioned into the pro
duction state in the oxygen-depleted condition before the feature me
tabolites were sufficiently depleted for the model to identify and predict 
a state shift, leading to a false negative prediction. Other cells had not 
transitioned to the production state despite depletion of the feature 
metabolites in the high-oxygen condition, leading to a false positive 
prediction by the phase classifier. Except for a small number of extreme 

conditions, the model robustly predicts cell state shifts arising from 
nutrient depletion within the bioreactor across a wide range of 
conditions. 

2.4. The dFBA algorithm accurately predicts concentration profiles 

We simulated the cell density, glucose, lactate, antibody, and 17 
amino acid concentration profiles over the 13-day perfusion bioprocess 
run across 8 different media conditions (Supplementary Fig. S3). To 
evaluate its performance, we compared the concentration profiles, 
predicted using COSMIC-dFBA with two implementations of traditional 
dFBA. In the first case (referred to as the “traditional dFBA case”), we 
retained the cellular objectives, but assumed that state transition coin
cided with the hypothermic shift. In the second case (referred to as the 
“assumed objective case”), we retained the cell state distribution pre
dictor from COSMIC-dFBA, but assumed that the cells only maximize 
biomass during the growth state and maximize antibody production in 
the production state. Fig. 5A compares the day 13 concentration pre
dictions by COSMIC-dFBA and the two test cases. We found that 
COSMIC-dFBA significantly outperformed both test cases based on 
traditional dFBA, thus highlighting the need to account for changing 
bioreactor conditions and metabolic tasks. We also evaluated the 
improvement in prediction (defined as the mean fractional reduction in 
disagreement between predicted and measured concentrations over the 
course of the bioprocess) as a measure of how well the concentration 
profiles predicted by each algorithm agree with the experimental data. 
From this we found that the concentration profiles predicted by 
COSMIC-dFBA for cell density, antibody titer, glucose, lactate, gluta
mine, and glutamate were in better agreement with the measured data 
than the traditional dFBA cases (Fig. 5B). However, the standard dFBA 

Fig. 3. Training the phase classifier model to predict cell state based on bioreactor conditions.  
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test cases better predicted the consumption of several essential amino 
acids. 

The traditional dFBA case greatly overestimated the final cell density 

in all eight growth conditions. This was because the traditional dFBA 
case assumed that the entire cell population transitioned from the 
growth phase to the production phase when the hypothermic shift was 

Fig. 4. Comparison of model-predicted and measured population fractions in the production phase. The Blue dots represent the data points that were correctly 
identified to be in either the growth or production phase with a 10% margin of error. The orange dots represent the correctly predicted phases with a 20% margin of 
error. The red dots represent data that were incorrectly predicted by the phase classifier model. 

Fig. 5A. Consistency of measured and predicted concentrations on day 13 for amino acids (downward triangles), glycolytic metabolites (upward triangles), cell 
density (circles) and antibody titer (square) using COSMIC-dFBA (blue markers), a standard dFBA algorithm with specified cellular objectives and phase switch at a 
fixed time point (red markers), and a standard dFBA algorithm with the phase classifier from COSMIC-dFBA but assuming maximize biomass objective during the 
growth phase and maximize antibody production objective in the production phase (orange markers). 
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applied, regardless of the bioreactor conditions. Thus, this case failed to 
account for the redistribution of metabolic fluxes and a shift from cell 
growth to antibody production when key metabolites were depleted 
early, particularly in the low glucose and low amino acid cases. This led 
to an extended growth phase in all eight conditions, and a higher cell 
density at the end of the growth phase. Consequently, this approach 
predicted a higher antibody titer in all growth conditions. On the other 
hand, the final cell density predicted using the “assumed objectives” 
case was only 14.8% higher than those predicted using COSMIC-dFBA. 
This agreement between COSMIC-dFBA and the “assumed objectives” 
case arises from the fact that the assumed maximization of biomass 
formation is close to the actual metabolism of the cells, which channels, 
on average, 82% of the resources towards biomass production in the 
growth phase (Fig. 2). This implementation also assumed that all 
available resources were channeled into antibody production in the 
production phase, whereas the experimental data suggests that 25% of 
the resources were channeled into other cellular processes. This led to a 
dramatic overprediction of antibody titer in the bioreactor. Overall, 
these comparisons demonstrate the importance of the two integral 
components of COSMIC-dFBA (the phase classifier and comprehensive 
accounting of metabolic tasks), which contribute to the algorithm’s 
superior predictive capabilities compared to existing dFBA-based bio
process modeling frameworks. 

3. Discussion 

This study presents COSMIC-dFBA, a multi-scale dynamic flux bal
ance analysis framework that combines machine learning and mecha
nistic modeling techniques to simulate cell behavior in a perfusion 
bioprocess and predict metabolic shifts in response to changing biore
actor conditions. This framework operates at two scales: the bioreactor 
scale and the cellular scale. The cellular scale interfaces with the 
bioreactor scale using the cell state distribution predictor that de
termines the distributions of cell populations in various states based on 
prevailing bioreactor conditions. Based on the determined cell state, 
nutrients are consumed according to previously parameterized kinetic 
rate laws, and consumed nutrients are channeled into appropriate state- 
specific metabolic tasks (e.g., cell growth, antibody production, etc.). 
This yields the net instantaneous production and consumption rates of 

all metabolites in the bioreactor, which are then used to update the 
bioreactor concentrations by solving a system of ODEs. Leveraging the 
metabolic model provides a mechanistic relationship between nutrient 
uptake and product secretion as well as additional pathways through 
which metabolic flux is diverted to generate byproducts. By dynamically 
adjusting product yields, this framework always ensures that nutrient 
consumption and product formation in the bioreactor satisfy conserva
tion of mass and are thermodynamically feasible, which is not always 
the case when modeling a bioprocess using empirical models. Unlike 
previous dFBA approaches (Nolan and Lee, 2011), COSMIC-dFBA does 
not need to solve any quadratic programming problems, which consid
erably decreases the computational cost. This permits the use of 
genome-scale metabolic models for dFBA, which increases generaliz
ability. Incorporating the means to modulate cellular resource allocation 
using a hybrid modeling paradigm improves fidelity without the need 
for developing detailed mechanistic models such as whole-cell models or 
ME-models. Furthermore, by using an adaptive time step, a desired 
integration accuracy can be ensured without resorting to collocation (St 
John et al., 2017), which significantly reduces the number of time-steps 
and by extension, the number of times the FBA problem must be solved 
(de Oliveira et al., 2023; Zhuang et al., 2011). 

COSMIC-dFBA is particularly versatile in that it only requires the 
usual data typically collected during a bioprocess to train the model. 
Uptake and secretion rates were computed from metabolite concentra
tion profiles and analyzed to determine phase-specific resource alloca
tion to identify the major metabolic tasks prioritized by the cell in 
various states, whereas phase shifts were predicted based on reactor 
metabolite concentrations and temperature shifts. This makes it partic
ularly suitable to model all types of bioprocesses (batch, fed-batch, and 
perfusion) in which state shifts are primarily driven by extracellular 
factors. However, applications of COSMIC-dFBA to batch and fed-batch 
processes must factor in additional metabolic states that can exist such 
as lactate consumption and late stationary phases (Gopalakrishnan 
et al., 2023; Templeton et al., 2013; Zagari et al., 2013). Other types of 
omics data can be readily incorporated to minimize manual in
terventions. For example, integrating gene expression data enables 
extraction of context-specific metabolic models (Gustafsson et al., 2023; 
Opdam et al., 2017), which have been previously shown to vary between 
process phases. Transcriptomics data can also suggest metabolic tasks 

Fig. 5B. Improvement in predictions by COSMIC-dFBA compared to models with no classifier or assumed objective functions.  
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not captured by exo-metabolomics data (Masson et al., 2022; Masson 
et al., 2023; Richelle et al., 2021). Proteomics data can be incorporated 
to correlate changes in transporter abundance with phase shifts (Colijn 
et al., 2009; Sanchez et al., 2017; Tian and Reed, 2018; Yeo et al., 2020), 
which modulates the maximum uptake rate of nutrients in each process 
phase. 

The key strength of COSMIC-dFBA is the ability to learn from addi
tional experimental data that allows it to predict newer states. Our an
alyses indicate that the cell state distribution predictor is a vital 
component of this framework that smoothly modulates state shifts using 
a single layer perceptron (linear combination of inputs combined with a 
logistic activation function). The choice of activation function was based 
on previous efforts to model cellular signal transduction (Samaga and 
Klamt, 2013; Wynn et al., 2012) and gene activation (Ay and Arnosti, 
2011) in response to changing environmental conditions within the 
bioreactor. The main drawback of this approach is that the framework 
cannot automatically determine the cause of the state shift (arising from 
nutrient depletion, temperature shift, oxygen limitation, etc.) and as
sumes that all phase shifts are of the same nature. In the current 
implementation of COSMIC-dFBA, we circumvent this by defining the 
cellular objectives for each type of phase shift in advance. However, 
automated prediction of changes in metabolic task priorities in response 
to phase shifts will require an overlay of the signaling (Lin et al., 2022; 
Sompairac et al., 2019) and gene expression networks (Pio et al., 2022) 
on to existing models of metabolism in the absence of fully descriptive 
whole-cell models (Ahn-Horst et al., 2022; Karr et al., 2012). Such 
models will expand the predictive capabilities of COSMIC-dFBA to 
predict heterogeneity in cell populations in large-scale bioreactors 
arising from non-homogeneous mixing and poor local oxygen transfer. 
That will allow the framework to predict and correct the potential det
riments to process yield and productivity upon scale-up to 
manufacturing scales. Despite these limitations, COSMIC-dFBA signifi
cantly outperforms traditional dFBA in its current form. The ability to 
model dynamic metabolism uniquely positions this framework for ap
plications in bioprocesses with metabolic shifts. 

4. Methods 

4.1. Cell culture and process data acquisition 

A stable, clonally derived Chinese hamster ovary (CHO) cell line 
expressing a non-glycosylated recombinant protein was thawed and 
scaled up in proprietary growth media to generate sufficient cell mass to 
inoculate a production perfusion bioreactor. The production bioreactors 
were operated in 3 L stirred tank bioreactors with a 1.5 L working vol
ume for 13 days using proprietary chemically defined media. Bio
reactors were inoculated in the same basal production media. Perfusion 
was performed using alternating tangential flow filtration starting at 
Day 0 at a perfusion rate of 1 bioreactor volume per day for a duration of 
13 days. On Day 8, the temperature setpoint was decreased for the 
remaining duration of the experiment. The experimental conditions 
were set up following a Box Behnken DOE varying dissolved oxygen, 
perfusion media amino acid levels, and perfusion media glucose con
centration as shown in Supplementary Table ST1. 

Bioreactor parameters, such as agitation, dissolved oxygen concen
tration, pH, and temperature were monitored and controlled through a 
DeltaV controller (Emerson, St. Louis, MO, USA). The pH was controlled 
through CO2 or 1 M Na2CO3 addition. Dissolved oxygen was maintained 
by sparging oxygen through a drilled pipe and a sintered sparger. 
Additionally, inline off-gas O2 and CO2 were monitored using the 
BlueSens BlueVary gas sensor (BlueSens, Wood Dale, IL, USA). The daily 
sampling procedure consisted of cell density and viability using a Cedex 
HiRes analyzer (Roche Diagnostics, Indianapolis, IN, USA), metabolites 
(lactate, glucose, glutamine, glutamate, and ammonium) from a Cedex 
Bio HT analyzer (Roche Diagnostics, Indianapolis, IN, USA), osmolality 
using the Advanced Instruments OsmoPRO (Advanced Instruments, 

Norwood, MA, USA), and external pH, pCO2, and pO2 using a Siemens 
RAPIDLab 1260 (Siemens Healthineers, Erlangen, Germany). Daily 
clarified samples for each reactor were analyzed for titer via HPLC. 
Amino acid concentrations were determined as follows: cell culture 
supernatant samples were filtered through a 0.2 μm filter then diluted 
properly with 18 mM HCl and mixed with the internal standard mixture 
containing heavy isotope labeled amino acids. An UHPLC system Agilent 
1290 (Agilent Technologies, Santa Clara, CA, USA) equipped with a 
reversed phase C18 column (Agilent Poroshell 120 SB-C18, 1.9 μm, 2.1 
mm × 100 mm) was used for components separation. The mobile phases 
used were water (A) and acetonitrile (B) in 0.2% heptafluorobutyric acid 
(HFBA). Targeted quantitation data were acquired using the dynamic 
Multiple Reaction Monitoring (MRM) mode on an Agilent 6490 Triple 
Quadrupole mass spectrometer. Agilent MassHunter B.08.00 was used 
for data acquisition and data analysis. 

4.2. Metabolic model and data processing 

iCHO1766 was used as the base metabolic model (Hefzi et al., 2016). 
The protein secretory pathway (Gutierrez et al., 2020) was appended to 
iCHO1766 to accurately model the precursor and energy demands for 
antibody synthesis and secretion. Two phases were identified using the 
concentration data. The growth rate, antibody specific productivity, 
uptake and secretion rates of all measured metabolites, and the fraction 
of cell population in each phase were computed from the concentration 
profiles using nonlinear regression as described in the supplementary 
methods. The computed fluxes in each growth condition are reported in 
Supplementary Table ST3. 

4.3. Inferring state-specific metabolic task objectives and priorities 

State-specific metabolic flux distributions were modulated in terms 
of metabolic tasks and task efficiencies. Each state-specific model was 
calibrated as described in the supplementary material. Briefly, all 
measured quantities were classified into either nutrients (consumed by 
cells) or byproducts (generated by cells) in each phase. All secreted 
byproducts were considered “metabolic tasks” and their priority order 
was determined in an iterative manner. First, the experimentally infer
red uptake rates of nutrients were fixed in the metabolic model. This 
fixes the total nutrient influx into cellular metabolism. Following this, 
the flux through each metabolic task was individually maximized using 
Flux Balance Analysis (FBA) (Varma and Palsson, 1994). Task efficiency 
for each metabolic task was computed as the ratio of measured flux 
through the metabolic task to the maximum flux predicted using FBA. 
The task with the highest efficiency was considered the highest priority 
task as it reflects the maximal nutrient utilization towards this task and 
its corresponding efficiency was stored. To find the next priority task, 
the experimentally measured flux through the previous task was 
enforced as a lower bound in the metabolic model and that task was 
removed from the list of metabolic tasks to be evaluated. Following this, 
the task efficiency calculation steps were repeated to identify the next 
highest priority task. This loop was repeated until all metabolic tasks 
were ordered. The list of state-specific metabolic tasks and their corre
sponding task efficiencies are reported in Supplementary Table ST4. 

4.4. Training the cell state distribution predictor 

The cell state distribution predictor is a machine-learning model that 
predicts cell state based on bioreactor conditions. Using bioreactor 
media concentrations, partial pressure of oxygen, and the temperature 
of the bioreactor as inputs, the phase classifier model is trained using the 
three-step process depicted in Fig. 3 and predicts the fraction of cell 
population in the production state. For each condition considered in this 
study, time points were classified into either growth state, production 
state, or mixed populations based on whether the fraction of cells in the 
production state were less than 20%, greater than 80%, or somewhere in 
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between, respectively. Concentrations of all metabolites were grouped 
into these three classes and plotted to identify metabolites correlated 
with phase shifts. Candidate metabolites were chosen such that their (a) 
median concentrations changed drastically between the growth and 
production states, and (b) they were depleted, or close to depleted in the 
production state. Oxygen and temperature were included to account for 
premature state shifts arising from hypoxic (Zeh et al., 2021) and hy
pothermic shifts (Wulhfard et al., 2008). The second step is to reduce the 
dimensionality of the data such that the growth and production state 
data are separated into distinct clusters. We used Linear Discriminant 
Analysis (LDA) to achieve this. The projected concentration w is related 
to feature i (metabolite concentration, partial pressure of oxygen, or 
temperature) via a weighted linear combination using weights ki using 
Equation (1): 

w=
∑N

i
ki ∗ featurei (1) 

Following this, projected concentrations were computed for all three 
classes and logistic regression was performed to compute the parameters 
a and b, representing the steepness of the transition and the bias, 
respectively and model the transition from growth to production state 
using Equation (2): 

p(w)=
1

1 + ea∗w− b (2)  

4.5. Simulating metabolite concentration profiles and culture parameters 
using COSMIC-dFBA 

COSMIC-dFBA simulates bioreactor concentration profiles by solving 
the following initial value problem (IVP) for cell density (X(t)), cell size 
(S(t)), and concentration of metabolite i (Ci(t)) from time t0 to tf : 

dX(t)
dt

= μeff X(t) (3)  

dS(t)
dt

= vbmaccS(t) (4)  

dCi(t)
dt

= vi,eff X(t) (5)  

X(t0)=X0 (6)  

S(t0)= S0 (7)  

Ci(t0)=Ci,0 (8)  

In Equations (3)–(5), μeff , vbmacc,eff , and vi,eff represent the effective 
growth rate, effective biomass accumulation rate, and the effective up
take/secretion rate of metabolite i, and are related to the growth and 
production phase fluxes via the population fraction parameter p(t)
computed using Equations (1) and (2): 

μeff (t) = (1 − p(t))μgrowth + p(t)μproduction (9)  

vbmacc,eff (t) = (1 − p(t))vbmacc,growth + p(t)vbmacc,production (10)  

vi,eff (t)= (1 − p(t))vi,growth + p(t)vi,production (11) 

The above IVP is solved using the Bulirsch-Stoer algorithm (Bulirsch 
and Stoer, 1966) with adaptive step-size control (Deuflhard, 1983) to 
reduce the number of times the metabolic model must be solved without 
loss of accuracy. COSMIC-dFBA is encoded and executed in MATLAB™. 
The source code is provided as a zip file in the supplementary material. 
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