Metabolic Engineering 82 (2024) 183-192

Contents lists available at ScienceDirect

METABOLIC

Metabolic Engineering

journal homepage: www.elsevier.com/locate/meteng

ELSEVIER

COSMIC-dFBA: A novel multi-scale hybrid framework for el
bioprocess modeling

Saratram Gopalakrishnan ®, William Johnson b Miguel A. Valderrama-Gomez ® Elcin Icten®,
Jasmine Tat ", Michael Ingram b Coral Fung Shek b Pikﬂ_ K. Chan ", Fabrice Schlegel b
Pablo Rolandi”, Cleo Kontoravdi ¢, Nathan E. Lewis >%"

@ Department of Pediatrics, University of California San Diego, USA

® Process Development, Amgen, USA

¢ Department of Chemical Engineering, Imperial College London, UK

4 Department of Bioengineering, University of California San Diego, USA

ARTICLE INFO ABSTRACT

Keywords:

Bioprocess modeling

Machine learning

Metabolic models

Dynamic flux balance analysis

Metabolism governs cell performance in biomanufacturing, as it fuels growth and productivity. However, even in
well-controlled culture systems, metabolism is dynamic, with shifting objectives and resources, thus limiting the
predictive capability of mechanistic models for process design and optimization. Here, we present Cellular
Objectives and State Modulation In bioreaCtors (COSMIC)-dFBA, a hybrid multi-scale modeling paradigm that
accurately predicts cell density, antibody titer, and bioreactor metabolite concentration profiles. Using machine-
learning, COSMIC-dFBA decomposes the instantaneous metabolite uptake and secretion rates in a bioreactor into
weighted contributions from each cell state (growth or antibody-producing state) and integrates these with a
genome-scale metabolic model. A major strength of COSMIC-dFBA is that it can be parameterized with only
metabolite concentrations from spent media, although constraining the metabolic model with other omics data
can further improve its capabilities. Using COSMIC-dFBA, we can predict the final cell density and antibody titer
to within 10% of the measured data, and compared to a standard dFBA model, we found the framework showed a
90% and 72% improvement in cell density and antibody titer prediction, respectively. Thus, we demonstrate our
hybrid modeling framework effectively captures cellular metabolism and expands the applicability of dFBA to
model the dynamic conditions in a bioreactor.

secretion rates relative to the limiting nutrient to change during the
bioprocess (Sunley et al., 2008; Templeton et al., 2013). This limitation

1. Introduction

Maximizing recombinant protein titer in a pharmaceutical bio-
process can be facilitated by optimizing nutrient feeding. Optimal con-
ditions are commonly identified using time and resource-intensive
design of experiments (DOE) strategies (Kasemiire et al., 2021). Models
built on process data can help predict the trajectory of cellular states and
control the process environment (Sidoli et al., 2004). Predictive models
have previously leveraged empirical Monod-based equations to compute
growth rates based on the extracellular concentrations of limiting nu-
trients (Ben Yahia et al., 2021; Galleguillos et al., 2017). The uptake and
secretion rates for non-limiting nutrients are described by their relative
uptake/secretion rates and/or kinetic rate laws defined by concentra-
tions (Lopez-Meza et al., 2016). However, nutrient depletion and toxic
metabolite accumulation lead to metabolic shifts that cause uptake and

motivates the inclusion of descriptive and mechanistic models of cellular
metabolism in dynamic bioreactor models.

Genome-scale metabolic models are comprehensive collections of all
metabolic pathways for an organism and are valuable for predicting
product yields when nutrient uptake rates are specified. Metabolic flux
through the entire network can be predicted using constraint-based
modeling, such as flux balance analysis (Orth et al., 2010), which as-
sumes that resource allocation in a cell aims to fulfill specific cellular
objectives. This capability is leveraged for dynamic flux balance analysis
(dFBA) (Mahadevan et al., 2002) and uses bioreactor substrate con-
centrations to determine nutrient uptake by the metabolic model. Fluxes
are then predicted with the metabolic model to update metabolite
concentrations in the bioreactor. Overall, this framework embeds the
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FBA problem within a system of ODEs to predict metabolic and cellular
dynamics in the reactor.

While dFBA is structurally simple, it has three disadvantages that
limit its application to mammalian bioprocessing. First, cellular meta-
bolism is dynamic and therefore, the metabolic model must be tailored
to be consistent with the extracellular environment. Otherwise, the full
genome-scale model over-predicts intracellular fluxes as it affords the
use of conditionally inactivated pathways (Jerby et al., 2010). Second,
changes in extracellular environments cause cells to change the abun-
dance of transporter proteins, which further changes kinetic parameters
governing nutrient uptake rates (Laakso et al., 2011). Third, cells exhibit
metabolic shifts arising from metabolite accumulation, such as lactate,

Genome-scale Model

Computed uptake
and secretion rates

Metabolic Engineering 82 (2024) 183-192

wherein lactate production switches to lactate consumption during the
bioprocess (Torres et al., 2018). This is frequently seen in fed-batch
cultures with CHO cells and must be conditionally integrated into
existing bioprocess models (Nolan and Lee, 2011).

Capturing metabolic shifts requires us to first characterize them.
Some algorithms rely on visual inspection (Dean and Reddy, 2013) or
piecewise linear regression (Ben Yahia et al., 2017) to identify different
process phases. However, these methods suffer from the drawback that
the model may reflect a single dataset or growth condition. Thus, they
may not generalize to other conditions prevalent in the bioreactor or
states of a bioprocess. Finally, predicting product fluxes requires us to
know a cell’s objectives for a given cellular state. Objective functions,
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Fig. 1A. Overall workflow showing the pre-requisites and simulation approach used by COSMIC-dFBA. COSMIC-dFBA predicts metabolite concentration, cell
density, and antibody titer profiles by solving a system of ordinary differential equations in which the rate of metabolite uptake/secretion is determined using a
metabolic model. In order to accomplish this, three inputs must be specified. The first input is the state-specific metabolic model, which is derived from a genome-
scale metabolic model by overlaying different types of -omics data (metabolomic, transcriptomic, or fluxomic data). The second requirement is the knowledge of
state-specific cellular objectives encoding the allocation of nutrients into various products, which is inferred from metabolite uptake and secretion rates computed
using spent media analysis. The third requirement is a cell state distribution predictor, a machine learning model that predicts the cell state based on prevailing
conditions to adjust nutrient uptake by the metabolic model. These three prerequisites feed into the dFBA-CORE sub-routine, which computes instantaneous uptake
and secretion rates as depicted in Fig. 1B.
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such as growth rate maximization, can be reliably applied to quantify
metabolism in prokaryotes; however, these objectives have limited
relevance to mammalian cells, since they only partially characterize the
growth phase (Savinell and Palsson, 1992). To model the non-growing
states, alternative objective functions must be explored (Garcia San-
chez and Torres Saez, 2014). More recently, parsimonious nutrient up-
take was proposed as an objective (Chen et al., 2019), but it does not
capture the variation in amino acid allocation towards different re-
combinant proteins. Therefore, there is a need for a comprehensive
framework that correctly models the biological characteristics of the
cells in the bioreactor with high fidelity by addressing the changes in cell
states arising from constantly changing conditions in an industrial
bioprocess.

Here we present Cellular Objectives and State Modulation In bio-
reaCtors (COSMIC)-dFBA, a multi-scale modeling framework for pre-
dicting concentration profiles of glucose, metabolic byproducts,
antibody, amino acids, and cell density in a perfusion bioprocess
(Fig. 1A, 1B). As with standard dFBA, COSMIC-dFBA predicts concen-
tration profiles of metabolites by solving a system of ODE equations in
which the uptake rates of metabolites are determined by kinetic rate
laws and product secretion rates are predicted by the metabolic model.
To compute fluxes using the metabolic model, COSMIC-dFBA first de-
termines the number of cell states by inspecting uptake and production
fluxes between various sampling intervals. Using these data, we then
compute the fraction of cells in each phase, which provides a measure of
state shift. We then identify the metabolites that show a significant
difference in concentration between the identified states and train the
cell state distribution predictor, a statistical model to predict state shift
based on the prevailing bioreactor conditions. Using uptake and secre-
tion rates inferred from spent media analysis, we then generate a priority
list for metabolic tasks to determine the order of resource allocation of
various cellular objectives for each identified state. A parameterized
kinetic rate law is used to constrain nutrient uptake in each identified
state. This information is then used to solve the metabolic model and
predict the net uptake and secretion rates of all tracked metabolites. This
framework accurately predicts concentration profiles and antibody ti-
ters in a diverse range of bioreactor conditions including glucose, amino
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acid, and oxygen depleted media. Therefore, this framework is a valu-
able resource for bioprocess characterization and optimization.

2. Results
2.1. The COSMIC-dFBA framework

Cellular Objectives and State Modulation In bioreaCtors (COSMIC-
dFBA) is a multi-scale hybrid dynamic flux balance analysis framework
that predicts total cell density, antibody titer, and metabolite concen-
tration profiles throughout a bioprocess. Fig. 1A, 1B shows the sche-
matic representation of COSMIC-dFBA along with the pre-requisites and
dynamic inputs required for execution. We define a cell state (hereafter
referred to as “state”) as the aggregate of nutrient uptake, afforded
pathways for metabolism, and flux distribution into various products.
The conceptual advancement by COSMIC-dFBA is the seamless transi-
tion between states in a dynamic bioprocess without the need for
condition-specific parametrization of state transition. Because FBA is
only applicable at metabolic steady-state, intracellular flux distributions
are constrained via nutrient uptake rates in traditional dFBA. COSMIC-
dFBA overcomes this limitation by assuming that overall metabolism
in the reactor is a weighted average of metabolism of cells in various
states. The cell state at any time point is predicted by the Cell State
Distribution Predictor model based on instantaneous bioreactor condi-
tions and feature metabolite concentrations using a supervised machine-
learning classifier (See Methods section 4.4). The four prerequisites for
executing COSMIC-dFBA include (i) state-specific metabolic models that
contain limits on nutrient uptake and pathways available for meta-
bolism, (ii) state-specific uptake kinetics that reflect the effects of
changing gene expression on nutrient uptake in different cell states, (iii)
state-specific metabolic tasks that encode the resource allocation in each
cell state, and (iv) a machine learning model to predict population dis-
tribution among cell states based on the prevailing conditions in the
bioreactor. The procedure for preparing these prerequisites is described
in the Supplementary Methods.

COSMIC-dFBA simulates bioreactor metabolite and product con-
centrations by solving a system of ODEs describing the feeding, removal,
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Fig. 1B. Computing instantaneous metabolic fluxes in COSMIC-dFBA using the dFBA-CORE sub-routine. The system of ODEs solved to update reactor metabolite
concentrations requires uptake and secretion rates that are computed as a weighted average of metabolism from all possible cell states (growth and production states,
in this case). The weights for the contributions are computed using the cell state distribution predictor. The fluxes corresponding to each cell state are computed by
solving a multi-level flux balance analysis problem using the state-specific metabolic model, provided state-specific uptake rates (determined by reactor metabolite
concentrations using a Monod-like equation), and specified cellular objectives. The net result is a set of flux distributions corresponding to various cell states. These
flux distributions are averaged based on weights computed by the cell state distribution predictor to obtain the net uptake and secretion rates.
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and metabolism of nutrients and products in the bioreactor (Fig. 1B). At
each time point, the uptake rates and secretion rates are computed in
three steps. First, uptake rates for all nutrients are calculated using
computed kinetic rate laws for each state. Next, the computed nutrient
uptake rates are used to constrain the respective state-specific metabolic
models. The state-specific secretion rates are computed by solving the
state-specific metabolic model using a multi-objective FBA. Finally, the
average uptake and secretion rates are computed by weighting the
computed state-specific uptake and secretion rates by the fraction of
cells in each state, predicted by the cell state distribution predictor
model based on prevalent bioreactor condition. These overall rates are
then used to update the nutrient concentrations in the bioreactor.

2.2. Cellular objectives are cell state-specific

A PCA of computed fluxes revealed two distinct cell states (state 1
and state 2) representing metabolism before day 3 and after day 10 (see
Supplementary Results). We analyzed the computed state-specific up-
take and secretion rates (see Methods section 4.3 and Supplementary
methods section 1) in the context of the iCHO1766 metabolic model to
quantify the changes in resource allocation associated with state shift.
We first computed the task efficiencies (defined as the ratio of measured
flux to maximum flux predicted by the metabolic model) for each
secreted product and assigned priorities to each metabolic task (see
Supplementary Methods). Fig. 2 shows the task efficiency averaged
across all reactor conditions for all measured metabolic byproducts in
both states. We found that biomass formation and lactate secretion were
the top two metabolic tasks in state 1, accounting for 88% of the
consumed carbon and 40% of the consumed nitrogen, as quantified by
FBA. Based on this, we call state 1 the “growth state”. The primary
metabolic task in the production phase was antibody production, ac-
counting for 73% of the consumed nitrogen. Based on this, we call state
2 the “production state”. Although the total cell density did not change
for cells in the production state, the cell size steadily increased,
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suggesting that biomass precursors were being synthesized and accu-
mulated. These findings demonstrate that metabolism qualitatively
changes upon state shift in the bioprocess and motivates the need to
incorporate approaches to account for cell state shifts and changing
metabolic objectives in a dFBA simulation.

2.3. The cell state distribution predictor captures phase-shifts driven by
nutrient and oxygen depletion

To ensure that cell state is properly predicted by changes in reactor
conditions when simulating a bioprocess, we developed a state classi-
fication model and trained it through a three-step workflow (Fig. 3). The
first step is to identify metabolites whose depletion correlates with the
observed state shift. To accomplish this, we label each data measure-
ment as either growth state, production state, or mixed state based on
the state progression parameter computed concurrently with uptake and
secretion rates (see Supplementary Methods section 1). The state pro-
gression parameter, f, represents the distribution of cell populations in
each cell state with f = 0 indicating that all cells are in the growth state
and f = 1 indicating that all cells are in the production state. Metabolite
concentrations at time points with f < 0.2 (less than 20% of the cells in
the production state) were considered to represent the growth state and
at time points with f > 0.8 (more than 80% of the cells in the production
state) were considered to represent the production state. We excluded
metabolites whose media concentration increased over time as meta-
bolic byproducts were constantly cleared from the bioreactor by perfu-
sion and retained only those metabolites whose media concentration
decreases by at least 50%. For the cell line and process considered here,
the full list of features includes glucose, asparagine, and glutamine as the
potential metabolite candidates in addition to oxygen level and biore-
actor temperature (Supplementary Fig. S2).

The second step in developing the phase classifier model is dimen-
sional reduction with Linear Discriminant Analysis (LDA) to project the
features to a lower dimensional space, such that projected features are
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Fig. 2. Resource allocation towards various metabolic tasks in the growth and production states. Cells were predominantly in the growth state before day 3 and
transitioned to the production state between day 3 and day 10, and remained in the production state beyond day 10 as inferred from overall metabolism within the
bioreactor. Most of the cellular resources were channeled into biomass formation in the growth state and towards antibody production in the production state.
Lactate was produced from glucose via glycolysis and from asparagine and glutamine via the anaplerotic pathways. Additional carbons were channeled into syn-
thesizing biomass precursors in the production state, which were accumulated intracellularly. A similar fraction of consumed nitrogen was channeled into ammonia
generation (via glutaminolysis and asparagine degradation) and alanine production via transamination in both states. Glycine production was significantly reduced

in the production state.
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Fig. 3. Training the phase classifier model to predict cell state based on bioreactor conditions.

correctly classified into the growth and production state. For this, we
consider features corresponding to growth state and production states (f
< 0.2 orf > 0.8) and ignore features corresponding to the mixed state. In
the final step, we fit a logistic curve to model the relationship between
projected features from all three states and the predicted state pro-
gression parameter. The resulting machine learning model intakes the
prevailing bioreactor features and predicts cell state to determine the net
uptake and secretion rates in the reactor (See Fig. 1B).

The cell state distribution predictor model correctly predicted the
state for 94 of 130 time points across all bioreactor growth conditions
with an accuracy of 0.1 (difference between predicted and computed
state is less than 0.1) and 118 of 130 time points with an accuracy of 0.2
(Fig. 4). The model had a specificity of 0.78 and a sensitivity of 0.681.
The Fl-score was 0.731 and Matthews’ correlation coefficient was
0.454. In contrast, models based on a random classifier (cell state dis-
tribution assumed to be a random number between 0 and 1) had a
Matthews’ correlation coefficient of —0.72, indicating that the state
prediction by the trained model significantly outperformed random
chance (permutation test, p-value <10~%). The model correctly identi-
fied state shifts associated with the depletion of asparagine, glutamine,
and glucose, even in growth conditions with altered amino acid and
glucose availability. In cases with altered oxygen availability, the model
correctly identified the cell state for all data except those between days
6-8. This was because the cells had already transitioned into the pro-
duction state in the oxygen-depleted condition before the feature me-
tabolites were sufficiently depleted for the model to identify and predict
a state shift, leading to a false negative prediction. Other cells had not
transitioned to the production state despite depletion of the feature
metabolites in the high-oxygen condition, leading to a false positive
prediction by the phase classifier. Except for a small number of extreme
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conditions, the model robustly predicts cell state shifts arising from
nutrient depletion within the bioreactor across a wide range of
conditions.

2.4. The dFBA algorithm accurately predicts concentration profiles

We simulated the cell density, glucose, lactate, antibody, and 17
amino acid concentration profiles over the 13-day perfusion bioprocess
run across 8 different media conditions (Supplementary Fig. S3). To
evaluate its performance, we compared the concentration profiles,
predicted using COSMIC-dFBA with two implementations of traditional
dFBA. In the first case (referred to as the “traditional dFBA case™), we
retained the cellular objectives, but assumed that state transition coin-
cided with the hypothermic shift. In the second case (referred to as the
“assumed objective case”), we retained the cell state distribution pre-
dictor from COSMIC-dFBA, but assumed that the cells only maximize
biomass during the growth state and maximize antibody production in
the production state. Fig. 5SA compares the day 13 concentration pre-
dictions by COSMIC-dFBA and the two test cases. We found that
COSMIC-dFBA significantly outperformed both test cases based on
traditional dFBA, thus highlighting the need to account for changing
bioreactor conditions and metabolic tasks. We also evaluated the
improvement in prediction (defined as the mean fractional reduction in
disagreement between predicted and measured concentrations over the
course of the bioprocess) as a measure of how well the concentration
profiles predicted by each algorithm agree with the experimental data.
From this we found that the concentration profiles predicted by
COSMIC-dFBA for cell density, antibody titer, glucose, lactate, gluta-
mine, and glutamate were in better agreement with the measured data
than the traditional dFBA cases (Fig. 5B). However, the standard dFBA
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Fig. 4. Comparison of model-predicted and measured population fractions in the production phase. The Blue dots represent the data points that were correctly
identified to be in either the growth or production phase with a 10% margin of error. The orange dots represent the correctly predicted phases with a 20% margin of
error. The red dots represent data that were incorrectly predicted by the phase classifier model.
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Fig. 5A. Consistency of measured and predicted concentrations on day 13 for amino acids (downward triangles), glycolytic metabolites (upward triangles), cell
density (circles) and antibody titer (square) using COSMIC-dFBA (blue markers), a standard dFBA algorithm with specified cellular objectives and phase switch at a
fixed time point (red markers), and a standard dFBA algorithm with the phase classifier from COSMIC-dFBA but assuming maximize biomass objective during the
growth phase and maximize antibody production objective in the production phase (orange markers).

test cases better predicted the consumption of several essential amino in all eight growth conditions. This was because the traditional dFBA
acids. case assumed that the entire cell population transitioned from the
The traditional dFBA case greatly overestimated the final cell density growth phase to the production phase when the hypothermic shift was
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Fig. 5B. Improvement in predictions by COSMIC-dFBA compared to models with no classifier or assumed objective functions.

applied, regardless of the bioreactor conditions. Thus, this case failed to
account for the redistribution of metabolic fluxes and a shift from cell
growth to antibody production when key metabolites were depleted
early, particularly in the low glucose and low amino acid cases. This led
to an extended growth phase in all eight conditions, and a higher cell
density at the end of the growth phase. Consequently, this approach
predicted a higher antibody titer in all growth conditions. On the other
hand, the final cell density predicted using the “assumed objectives”
case was only 14.8% higher than those predicted using COSMIC-dFBA.
This agreement between COSMIC-dFBA and the “assumed objectives”
case arises from the fact that the assumed maximization of biomass
formation is close to the actual metabolism of the cells, which channels,
on average, 82% of the resources towards biomass production in the
growth phase (Fig. 2). This implementation also assumed that all
available resources were channeled into antibody production in the
production phase, whereas the experimental data suggests that 25% of
the resources were channeled into other cellular processes. This led to a
dramatic overprediction of antibody titer in the bioreactor. Overall,
these comparisons demonstrate the importance of the two integral
components of COSMIC-dFBA (the phase classifier and comprehensive
accounting of metabolic tasks), which contribute to the algorithm’s
superior predictive capabilities compared to existing dFBA-based bio-
process modeling frameworks.

3. Discussion

This study presents COSMIC-dFBA, a multi-scale dynamic flux bal-
ance analysis framework that combines machine learning and mecha-
nistic modeling techniques to simulate cell behavior in a perfusion
bioprocess and predict metabolic shifts in response to changing biore-
actor conditions. This framework operates at two scales: the bioreactor
scale and the cellular scale. The cellular scale interfaces with the
bioreactor scale using the cell state distribution predictor that de-
termines the distributions of cell populations in various states based on
prevailing bioreactor conditions. Based on the determined cell state,
nutrients are consumed according to previously parameterized kinetic
rate laws, and consumed nutrients are channeled into appropriate state-
specific metabolic tasks (e.g., cell growth, antibody production, etc.).
This yields the net instantaneous production and consumption rates of
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all metabolites in the bioreactor, which are then used to update the
bioreactor concentrations by solving a system of ODEs. Leveraging the
metabolic model provides a mechanistic relationship between nutrient
uptake and product secretion as well as additional pathways through
which metabolic flux is diverted to generate byproducts. By dynamically
adjusting product yields, this framework always ensures that nutrient
consumption and product formation in the bioreactor satisfy conserva-
tion of mass and are thermodynamically feasible, which is not always
the case when modeling a bioprocess using empirical models. Unlike
previous dFBA approaches (Nolan and Lee, 2011), COSMIC-dFBA does
not need to solve any quadratic programming problems, which consid-
erably decreases the computational cost. This permits the use of
genome-scale metabolic models for dFBA, which increases generaliz-
ability. Incorporating the means to modulate cellular resource allocation
using a hybrid modeling paradigm improves fidelity without the need
for developing detailed mechanistic models such as whole-cell models or
ME-models. Furthermore, by using an adaptive time step, a desired
integration accuracy can be ensured without resorting to collocation (St
John et al., 2017), which significantly reduces the number of time-steps
and by extension, the number of times the FBA problem must be solved
(de Oliveira et al., 2023; Zhuang et al., 2011).

COSMIC-dFBA is particularly versatile in that it only requires the
usual data typically collected during a bioprocess to train the model.
Uptake and secretion rates were computed from metabolite concentra-
tion profiles and analyzed to determine phase-specific resource alloca-
tion to identify the major metabolic tasks prioritized by the cell in
various states, whereas phase shifts were predicted based on reactor
metabolite concentrations and temperature shifts. This makes it partic-
ularly suitable to model all types of bioprocesses (batch, fed-batch, and
perfusion) in which state shifts are primarily driven by extracellular
factors. However, applications of COSMIC-dFBA to batch and fed-batch
processes must factor in additional metabolic states that can exist such
as lactate consumption and late stationary phases (Gopalakrishnan
et al., 2023; Templeton et al., 2013; Zagari et al., 2013). Other types of
omics data can be readily incorporated to minimize manual in-
terventions. For example, integrating gene expression data enables
extraction of context-specific metabolic models (Gustafsson et al., 2023;
Opdam et al., 2017), which have been previously shown to vary between
process phases. Transcriptomics data can also suggest metabolic tasks
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not captured by exo-metabolomics data (Masson et al., 2022; Masson
et al., 2023; Richelle et al., 2021). Proteomics data can be incorporated
to correlate changes in transporter abundance with phase shifts (Colijn
et al., 2009; Sanchez et al., 2017; Tian and Reed, 2018; Yeo et al., 2020),
which modulates the maximum uptake rate of nutrients in each process
phase.

The key strength of COSMIC-dFBA is the ability to learn from addi-
tional experimental data that allows it to predict newer states. Our an-
alyses indicate that the cell state distribution predictor is a vital
component of this framework that smoothly modulates state shifts using
a single layer perceptron (linear combination of inputs combined with a
logistic activation function). The choice of activation function was based
on previous efforts to model cellular signal transduction (Samaga and
Klamt, 2013; Wynn et al., 2012) and gene activation (Ay and Arnosti,
2011) in response to changing environmental conditions within the
bioreactor. The main drawback of this approach is that the framework
cannot automatically determine the cause of the state shift (arising from
nutrient depletion, temperature shift, oxygen limitation, etc.) and as-
sumes that all phase shifts are of the same nature. In the current
implementation of COSMIC-dFBA, we circumvent this by defining the
cellular objectives for each type of phase shift in advance. However,
automated prediction of changes in metabolic task priorities in response
to phase shifts will require an overlay of the signaling (Lin et al., 2022;
Sompairac et al., 2019) and gene expression networks (Pio et al., 2022)
on to existing models of metabolism in the absence of fully descriptive
whole-cell models (Ahn-Horst et al., 2022; Karr et al., 2012). Such
models will expand the predictive capabilities of COSMIC-dFBA to
predict heterogeneity in cell populations in large-scale bioreactors
arising from non-homogeneous mixing and poor local oxygen transfer.
That will allow the framework to predict and correct the potential det-
riments to process yield and productivity upon scale-up to
manufacturing scales. Despite these limitations, COSMIC-dFBA signifi-
cantly outperforms traditional dFBA in its current form. The ability to
model dynamic metabolism uniquely positions this framework for ap-
plications in bioprocesses with metabolic shifts.

4. Methods
4.1. Cell culture and process data acquisition

A stable, clonally derived Chinese hamster ovary (CHO) cell line
expressing a non-glycosylated recombinant protein was thawed and
scaled up in proprietary growth media to generate sufficient cell mass to
inoculate a production perfusion bioreactor. The production bioreactors
were operated in 3 L stirred tank bioreactors with a 1.5 L working vol-
ume for 13 days using proprietary chemically defined media. Bio-
reactors were inoculated in the same basal production media. Perfusion
was performed using alternating tangential flow filtration starting at
Day 0 at a perfusion rate of 1 bioreactor volume per day for a duration of
13 days. On Day 8, the temperature setpoint was decreased for the
remaining duration of the experiment. The experimental conditions
were set up following a Box Behnken DOE varying dissolved oxygen,
perfusion media amino acid levels, and perfusion media glucose con-
centration as shown in Supplementary Table ST1.

Bioreactor parameters, such as agitation, dissolved oxygen concen-
tration, pH, and temperature were monitored and controlled through a
DeltaV controller (Emerson, St. Louis, MO, USA). The pH was controlled
through CO, or 1 M NayCOg addition. Dissolved oxygen was maintained
by sparging oxygen through a drilled pipe and a sintered sparger.
Additionally, inline off-gas Oy and CO, were monitored using the
BlueSens BlueVary gas sensor (BlueSens, Wood Dale, IL, USA). The daily
sampling procedure consisted of cell density and viability using a Cedex
HiRes analyzer (Roche Diagnostics, Indianapolis, IN, USA), metabolites
(lactate, glucose, glutamine, glutamate, and ammonium) from a Cedex
Bio HT analyzer (Roche Diagnostics, Indianapolis, IN, USA), osmolality
using the Advanced Instruments OsmoPRO (Advanced Instruments,
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Norwood, MA, USA), and external pH, pCO, and pO; using a Siemens
RAPIDLab 1260 (Siemens Healthineers, Erlangen, Germany). Daily
clarified samples for each reactor were analyzed for titer via HPLC.
Amino acid concentrations were determined as follows: cell culture
supernatant samples were filtered through a 0.2 pm filter then diluted
properly with 18 mM HCl and mixed with the internal standard mixture
containing heavy isotope labeled amino acids. An UHPLC system Agilent
1290 (Agilent Technologies, Santa Clara, CA, USA) equipped with a
reversed phase C18 column (Agilent Poroshell 120 SB-C18, 1.9 ym, 2.1
mm X 100 mm) was used for components separation. The mobile phases
used were water (A) and acetonitrile (B) in 0.2% heptafluorobutyric acid
(HFBA). Targeted quantitation data were acquired using the dynamic
Multiple Reaction Monitoring (MRM) mode on an Agilent 6490 Triple
Quadrupole mass spectrometer. Agilent MassHunter B.08.00 was used
for data acquisition and data analysis.

4.2. Metabolic model and data processing

iCHO1766 was used as the base metabolic model (Hefzi et al., 2016).
The protein secretory pathway (Gutierrez et al., 2020) was appended to
iCHO1766 to accurately model the precursor and energy demands for
antibody synthesis and secretion. Two phases were identified using the
concentration data. The growth rate, antibody specific productivity,
uptake and secretion rates of all measured metabolites, and the fraction
of cell population in each phase were computed from the concentration
profiles using nonlinear regression as described in the supplementary
methods. The computed fluxes in each growth condition are reported in
Supplementary Table ST3.

4.3. Inferring state-specific metabolic task objectives and priorities

State-specific metabolic flux distributions were modulated in terms
of metabolic tasks and task efficiencies. Each state-specific model was
calibrated as described in the supplementary material. Briefly, all
measured quantities were classified into either nutrients (consumed by
cells) or byproducts (generated by cells) in each phase. All secreted
byproducts were considered “metabolic tasks” and their priority order
was determined in an iterative manner. First, the experimentally infer-
red uptake rates of nutrients were fixed in the metabolic model. This
fixes the total nutrient influx into cellular metabolism. Following this,
the flux through each metabolic task was individually maximized using
Flux Balance Analysis (FBA) (Varma and Palsson, 1994). Task efficiency
for each metabolic task was computed as the ratio of measured flux
through the metabolic task to the maximum flux predicted using FBA.
The task with the highest efficiency was considered the highest priority
task as it reflects the maximal nutrient utilization towards this task and
its corresponding efficiency was stored. To find the next priority task,
the experimentally measured flux through the previous task was
enforced as a lower bound in the metabolic model and that task was
removed from the list of metabolic tasks to be evaluated. Following this,
the task efficiency calculation steps were repeated to identify the next
highest priority task. This loop was repeated until all metabolic tasks
were ordered. The list of state-specific metabolic tasks and their corre-
sponding task efficiencies are reported in Supplementary Table ST4.

4.4. Training the cell state distribution predictor

The cell state distribution predictor is a machine-learning model that
predicts cell state based on bioreactor conditions. Using bioreactor
media concentrations, partial pressure of oxygen, and the temperature
of the bioreactor as inputs, the phase classifier model is trained using the
three-step process depicted in Fig. 3 and predicts the fraction of cell
population in the production state. For each condition considered in this
study, time points were classified into either growth state, production
state, or mixed populations based on whether the fraction of cells in the
production state were less than 20%, greater than 80%, or somewhere in
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between, respectively. Concentrations of all metabolites were grouped
into these three classes and plotted to identify metabolites correlated
with phase shifts. Candidate metabolites were chosen such that their (a)
median concentrations changed drastically between the growth and
production states, and (b) they were depleted, or close to depleted in the
production state. Oxygen and temperature were included to account for
premature state shifts arising from hypoxic (Zeh et al., 2021) and hy-
pothermic shifts (Wulhfard et al., 2008). The second step is to reduce the
dimensionality of the data such that the growth and production state
data are separated into distinct clusters. We used Linear Discriminant
Analysis (LDA) to achieve this. The projected concentration w is related
to feature i (metabolite concentration, partial pressure of oxygen, or
temperature) via a weighted linear combination using weights k; using
Equation (1):

N
w= Z k; * feature; (@D)]

i

Following this, projected concentrations were computed for all three

classes and logistic regression was performed to compute the parameters
a and b, representing the steepness of the transition and the bias,
respectively and model the transition from growth to production state
using Equation (2):

1

— _ 2
1+ea*w—h ( )

p(w)

4.5. Simulating metabolite concentration profiles and culture parameters
using COSMIC-dFBA

COSMIC-dFBA simulates bioreactor concentration profiles by solving
the following initial value problem (IVP) for cell density (X(t)), cell size
(S(t)), and concentration of metabolite i (C;(t)) from time ¢, to t;:

dax(s)

o~ HerX(0) 3
as(t)

7 - meaccS(t) (4)
dci(t)

g =X (t) (5
X(Io) = X() (6)
S(lo) =5y (7)
Ci(t)) = Cip ®)

In Equations (3)-(5), Heg, Vomacc.effs and v;y represent the effective
growth rate, effective biomass accumulation rate, and the effective up-
take/secretion rate of metabolite i, and are related to the growth and
production phase fluxes via the population fraction parameter p(t)
computed using Equations (1) and (2):

P () = (1 = P(O)grpan + PO Hprodtciion (&)
meacc,eff (t) = ( 1 - P(t) ) meacv.gmwlh + P(f) vbmacc.production (1 0)
Vi,cﬁ‘(t) = (1 - p(t))vi.grour'th + P(f) Vi,prz)duction (1 1)

The above IVP is solved using the Bulirsch-Stoer algorithm (Bulirsch
and Stoer, 1966) with adaptive step-size control (Deuflhard, 1983) to
reduce the number of times the metabolic model must be solved without
loss of accuracy. COSMIC-dFBA is encoded and executed in MATLAB™.
The source code is provided as a zip file in the supplementary material.
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